# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import numpy as np
import torch
from monai.transforms import LoadImage
from monailabel.interfaces.datastore import Datastore, DefaultLabelTag
from monailabel.interfaces.tasks.scoring import ScoringMethod
logger = logging.getLogger(__name__)
[docs]class Sum(ScoringMethod):
"""
Consider implementing simple np sum method of label tags; Also add valid slices that have label mask
"""
def __init__(self, tags=(DefaultLabelTag.FINAL.value, DefaultLabelTag.ORIGINAL.value)):
super().__init__("Compute Numpy Sum for Final/Original Labels")
self.tags = tags
def __call__(self, request, datastore: Datastore):
loader = LoadImage(image_only=True)
result = {}
for image_id in datastore.list_images():
for tag in self.tags:
label_id: str = datastore.get_label_by_image_id(image_id, tag)
if label_id:
label = loader(datastore.get_label_uri(label_id, tag))
if isinstance(label, torch.Tensor):
label = label.numpy()
slices = [sid for sid in range(label.shape[0]) if np.sum(label[sid] > 0)]
info = {"sum": int(np.sum(label)), "slices": len(slices)}
logger.debug(f"{label_id} => {info}")
datastore.update_label_info(label_id, tag, info)
result[label_id] = info
return result