Transforms

Generic Interfaces

Transform

class monai.transforms.Transform[source]

An abstract class of a Transform. A transform is callable that processes data.

It could be stateful and may modify data in place, the implementation should be aware of:

  1. thread safety when mutating its own states. When used from a multi-process context, transform’s instance variables are read-only. thread-unsafe transforms should inherit monai.transforms.ThreadUnsafe.

  2. data content unused by this transform may still be used in the subsequent transforms in a composed transform.

  3. storing too much information in data may cause some memory issue or IPC sync issue, especially in the multi-processing environment of PyTorch DataLoader.

See Also

abstract __call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

backend: List[monai.utils.enums.TransformBackends] = []

Transforms should add data types to this list if they are capable of performing a transform without modifying the input type. For example, [“torch.Tensor”, “np.ndarray”] means that no copies of the data are required if the input is either “torch.Tensor” or “np.ndarray”.

MapTransform

class monai.transforms.MapTransform(keys, allow_missing_keys=False)[source]

A subclass of monai.transforms.Transform with an assumption that the data input of self.__call__ is a MutableMapping such as dict.

The keys parameter will be used to get and set the actual data item to transform. That is, the callable of this transform should follow the pattern:

def __call__(self, data):
    for key in self.keys:
        if key in data:
            # update output data with some_transform_function(data[key]).
        else:
            # raise exception unless allow_missing_keys==True.
    return data
Raises
  • ValueError – When keys is an empty iterable.

  • TypeError – When keys type is not in Union[Hashable, Iterable[Hashable]].

abstract __call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Returns

An updated dictionary version of data by applying the transform.

first_key(data)[source]

Get the first available key of self.keys in the input data dictionary. If no available key, return an empty list [].

Parameters

data (Dict[Hashable, Any]) – data that the transform will be applied to.

key_iterator(data, *extra_iterables)[source]

Iterate across keys and optionally extra iterables. If key is missing, exception is raised if allow_missing_keys==False (default). If allow_missing_keys==True, key is skipped.

Parameters
  • data (Dict[Hashable, Any]) – data that the transform will be applied to

  • extra_iterables (Optional[Iterable]) – anything else to be iterated through

Return type

Generator

Randomizable

class monai.transforms.Randomizable[source]

An interface for handling random state locally, currently based on a class variable R, which is an instance of np.random.RandomState. This provides the flexibility of component-specific determinism without affecting the global states. It is recommended to use this API with monai.data.DataLoader for deterministic behaviour of the preprocessing pipelines. This API is not thread-safe. Additionally, deepcopying instance of this class often causes insufficient randomness as the random states will be duplicated.

randomize(data)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

None

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

Randomizable

Returns

a Randomizable instance.

RandomizableTransform

class monai.transforms.RandomizableTransform(prob=1.0, do_transform=True)[source]

An interface for handling random state locally, currently based on a class variable R, which is an instance of np.random.RandomState. This class introduces a randomized flag _do_transform, is mainly for randomized data augmentation transforms. For example:

from monai.transforms import RandomizableTransform

class RandShiftIntensity100(RandomizableTransform):
    def randomize(self):
        super().randomize(None)
        self._offset = self.R.uniform(low=0, high=100)

    def __call__(self, img):
        self.randomize()
        if not self._do_transform:
            return img
        return img + self._offset

transform = RandShiftIntensity()
transform.set_random_state(seed=0)
print(transform(10))
randomize(data)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

Compose

class monai.transforms.Compose(transforms=None, map_items=True, unpack_items=False)[source]

Compose provides the ability to chain a series of callables together in a sequential manner. Each transform in the sequence must take a single argument and return a single value.

Compose can be used in two ways:

  1. With a series of transforms that accept and return a single ndarray / tensor / tensor-like parameter.

  2. With a series of transforms that accept and return a dictionary that contains one or more parameters. Such transforms must have pass-through semantics that unused values in the dictionary must be copied to the return dictionary. It is required that the dictionary is copied between input and output of each transform.

If some transform takes a data item dictionary as input, and returns a sequence of data items in the transform chain, all following transforms will be applied to each item of this list if map_items is True (the default). If map_items is False, the returned sequence is passed whole to the next callable in the chain.

For example:

A Compose([transformA, transformB, transformC], map_items=True)(data_dict) could achieve the following patch-based transformation on the data_dict input:

  1. transformA normalizes the intensity of ‘img’ field in the data_dict.

  2. transformB crops out image patches from the ‘img’ and ‘seg’ of data_dict, and return a list of three patch samples:

    {'img': 3x100x100 data, 'seg': 1x100x100 data, 'shape': (100, 100)}
                         applying transformB
                             ---------->
    [{'img': 3x20x20 data, 'seg': 1x20x20 data, 'shape': (20, 20)},
     {'img': 3x20x20 data, 'seg': 1x20x20 data, 'shape': (20, 20)},
     {'img': 3x20x20 data, 'seg': 1x20x20 data, 'shape': (20, 20)},]
    
  3. transformC then randomly rotates or flips ‘img’ and ‘seg’ of each dictionary item in the list returned by transformB.

The composed transforms will be set the same global random seed if user called set_determinism().

When using the pass-through dictionary operation, you can make use of monai.transforms.adaptors.adaptor to wrap transforms that don’t conform to the requirements. This approach allows you to use transforms from otherwise incompatible libraries with minimal additional work.

Note

In many cases, Compose is not the best way to create pre-processing pipelines. Pre-processing is often not a strictly sequential series of operations, and much of the complexity arises when a not-sequential set of functions must be called as if it were a sequence.

Example: images and labels Images typically require some kind of normalization that labels do not. Both are then typically augmented through the use of random rotations, flips, and deformations. Compose can be used with a series of transforms that take a dictionary that contains ‘image’ and ‘label’ entries. This might require wrapping torchvision transforms before passing them to compose. Alternatively, one can create a class with a __call__ function that calls your pre-processing functions taking into account that not all of them are called on the labels.

__call__(input_)[source]

Call self as a function.

flatten()[source]

Return a Composition with a simple list of transforms, as opposed to any nested Compositions.

e.g., t1 = Compose([x, x, x, x, Compose([Compose([x, x]), x, x])]).flatten() will result in the equivalent of t1 = Compose([x, x, x, x, x, x, x, x]).

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

randomize(data=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

None

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

Compose

Returns

a Randomizable instance.

InvertibleTransform

class monai.transforms.InvertibleTransform[source]

Classes for invertible transforms.

This class exists so that an invert method can be implemented. This allows, for example, images to be cropped, rotated, padded, etc., during training and inference, and after be returned to their original size before saving to file for comparison in an external viewer.

When the inverse method is called:

  • the inverse is called on each key individually, which allows for different parameters being passed to each label (e.g., different interpolation for image and label).

  • the inverse transforms are applied in a last- in-first-out order. As the inverse is applied, its entry is removed from the list detailing the applied transformations. That is to say that during the forward pass, the list of applied transforms grows, and then during the inverse it shrinks back down to an empty list.

We currently check that the id() of the transform is the same in the forward and inverse directions. This is a useful check to ensure that the inverses are being processed in the correct order.

Note to developers: When converting a transform to an invertible transform, you need to:

  1. Inherit from this class.

  2. In __call__, add a call to push_transform.

  3. Any extra information that might be needed for the inverse can be included with the dictionary extra_info. This dictionary should have the same keys regardless of whether do_transform was True or False and can only contain objects that are accepted in pytorch data loader’s collate function (e.g., None is not allowed).

  4. Implement an inverse method. Make sure that after performing the inverse, pop_transform is called.

check_transforms_match(transform)[source]

Check transforms are of same instance.

Return type

None

get_most_recent_transform(data, key=None)[source]

Get most recent transform.

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

dict

BatchInverseTransform

class monai.transforms.BatchInverseTransform(transform, loader, collate_fn=<function no_collation>, num_workers=0, detach=True, pad_batch=True, fill_value=None)[source]

Perform inverse on a batch of data. This is useful if you have inferred a batch of images and want to invert them all.

Parameters
  • transform (InvertibleTransform) – a callable data transform on input data.

  • loader (DataLoader) – data loader used to run transforms and generate the batch of data.

  • collate_fn (Optional[Callable]) – how to collate data after inverse transformations. default won’t do any collation, so the output will be a list of size batch size.

  • num_workers (Optional[int]) – number of workers when run data loader for inverse transforms, default to 0 as only run 1 iteration and multi-processing may be even slower. if the transforms are really slow, set num_workers for multi-processing. if set to None, use the num_workers of the transform data loader.

  • detach (bool) – whether to detach the tensors. Scalars tensors will be detached into number types instead of torch tensors.

  • pad_batch (bool) – when the items in a batch indicate different batch size, whether to pad all the sequences to the longest. If False, the batch size will be the length of the shortest sequence.

  • fill_value – the value to fill the padded sequences when pad_batch=True.

__init__(transform, loader, collate_fn=<function no_collation>, num_workers=0, detach=True, pad_batch=True, fill_value=None)[source]
Parameters
  • transform (InvertibleTransform) – a callable data transform on input data.

  • loader (DataLoader) – data loader used to run transforms and generate the batch of data.

  • collate_fn (Optional[Callable]) – how to collate data after inverse transformations. default won’t do any collation, so the output will be a list of size batch size.

  • num_workers (Optional[int]) – number of workers when run data loader for inverse transforms, default to 0 as only run 1 iteration and multi-processing may be even slower. if the transforms are really slow, set num_workers for multi-processing. if set to None, use the num_workers of the transform data loader.

  • detach (bool) – whether to detach the tensors. Scalars tensors will be detached into number types instead of torch tensors.

  • pad_batch (bool) – when the items in a batch indicate different batch size, whether to pad all the sequences to the longest. If False, the batch size will be the length of the shortest sequence.

  • fill_value – the value to fill the padded sequences when pad_batch=True.

Decollated

class monai.transforms.Decollated(keys=None, detach=True, pad_batch=True, fill_value=None, allow_missing_keys=False)[source]

Decollate a batch of data. If input is a dictionary, it also supports to only decollate specified keys. Note that unlike most MapTransforms, it will delete the other keys that are not specified. if keys=None, it will decollate all the data in the input. It replicates the scalar values to every item of the decollated list.

Parameters
  • keys (Union[Collection[Hashable], Hashable, None]) – keys of the corresponding items to decollate, note that it will delete other keys not specified. if None, will decollate all the keys. see also: monai.transforms.compose.MapTransform.

  • detach (bool) – whether to detach the tensors. Scalars tensors will be detached into number types instead of torch tensors.

  • pad_batch (bool) – when the items in a batch indicate different batch size, whether to pad all the sequences to the longest. If False, the batch size will be the length of the shortest sequence.

  • fill_value – the value to fill the padded sequences when pad_batch=True.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

OneOf

class monai.transforms.OneOf(transforms=None, weights=None, map_items=True, unpack_items=False)[source]

OneOf provides the ability to randomly choose one transform out of a list of callables with pre-defined probabilities for each.

Parameters
  • transforms (Union[Sequence[Callable], Callable, None]) – sequence of callables.

  • weights (Union[Sequence[float], float, None]) – probabilities corresponding to each callable in transforms. Probabilities are normalized to sum to one.

OneOf inherits from Compose and uses args map_items and unpack_items in the same way.

flatten()[source]

Return a Composition with a simple list of transforms, as opposed to any nested Compositions.

e.g., t1 = Compose([x, x, x, x, Compose([Compose([x, x]), x, x])]).flatten() will result in the equivalent of t1 = Compose([x, x, x, x, x, x, x, x]).

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Vanilla Transforms

Crop and Pad

Pad

class monai.transforms.Pad(to_pad, mode=NumpyPadMode.CONSTANT, **kwargs)[source]

Perform padding for a given an amount of padding in each dimension. If input is torch.Tensor, torch.nn.functional.pad will be used, otherwise, np.pad will be used.

Parameters
  • to_pad (List[Tuple[int, int]]) – the amount to be padded in each dimension [(low_H, high_H), (low_W, high_W), …].

  • mode (Union[NumpyPadMode, PytorchPadMode, str]) – available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate", "circular"}. One of the listed string values or a user supplied function. Defaults to "constant". See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html

  • kwargs – other arguments for the np.pad or torch.pad function. note that np.pad treats channel dimension as the first dimension.

__call__(img, mode=None)[source]
Parameters

img (Union[ndarray, Tensor]) – data to be transformed, assuming img is channel-first and padding doesn’t apply to the channel dim.

mode: available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum",

"mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate" or "circular"}. One of the listed string values or a user supplied function. Defaults to self.mode. See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html

Return type

Union[ndarray, Tensor]

SpatialPad

example of SpatialPad
class monai.transforms.SpatialPad(spatial_size, method=Method.SYMMETRIC, mode=NumpyPadMode.CONSTANT, **kwargs)[source]

Performs padding to the data, symmetric for all sides or all on one side for each dimension.

If input is torch.Tensor and mode is constant, torch.nn.functional.pad will be used. Otherwise, np.pad will be used (input converted to np.ndarray if necessary).

Uses np.pad so in practice, a mode needs to be provided. See numpy.lib.arraypad.pad for additional details.

Parameters
  • spatial_size (Union[Sequence[int], int]) – the spatial size of output data after padding, if a dimension of the input data size is bigger than the pad size, will not pad that dimension. If its components have non-positive values, the corresponding size of input image will be used (no padding). for example: if the spatial size of input data is [30, 30, 30] and spatial_size=[32, 25, -1], the spatial size of output data will be [32, 30, 30].

  • method (Union[Method, str]) – {"symmetric", "end"} Pad image symmetrically on every side or only pad at the end sides. Defaults to "symmetric".

  • mode (Union[NumpyPadMode, PytorchPadMode, str]) – available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate", "circular"}. One of the listed string values or a user supplied function. Defaults to "constant". See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html

  • kwargs – other arguments for the np.pad or torch.pad function. note that np.pad treats channel dimension as the first dimension.

__call__(img, mode=None)[source]
Parameters
  • img (Union[ndarray, Tensor]) – data to be transformed, assuming img is channel-first and padding doesn’t apply to the channel dim.

  • mode (Union[NumpyPadMode, PytorchPadMode, str, None]) – available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate", "circular"}. One of the listed string values or a user supplied function. Defaults to self.mode. See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html

Return type

Union[ndarray, Tensor]

BorderPad

example of BorderPad
class monai.transforms.BorderPad(spatial_border, mode=NumpyPadMode.CONSTANT, **kwargs)[source]

Pad the input data by adding specified borders to every dimension.

Parameters
  • spatial_border (Union[Sequence[int], int]) –

    specified size for every spatial border. Any -ve values will be set to 0. It can be 3 shapes:

    • single int number, pad all the borders with the same size.

    • length equals the length of image shape, pad every spatial dimension separately. for example, image shape(CHW) is [1, 4, 4], spatial_border is [2, 1], pad every border of H dim with 2, pad every border of W dim with 1, result shape is [1, 8, 6].

    • length equals 2 x (length of image shape), pad every border of every dimension separately. for example, image shape(CHW) is [1, 4, 4], spatial_border is [1, 2, 3, 4], pad top of H dim with 1, pad bottom of H dim with 2, pad left of W dim with 3, pad right of W dim with 4. the result shape is [1, 7, 11].

  • mode (Union[NumpyPadMode, PytorchPadMode, str]) – available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate", "circular"}. One of the listed string values or a user supplied function. Defaults to "constant". See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html

  • kwargs – other arguments for the np.pad or torch.pad function. note that np.pad treats channel dimension as the first dimension.

__call__(img, mode=None)[source]
Parameters
  • img (Union[ndarray, Tensor]) – data to be transformed, assuming img is channel-first and padding doesn’t apply to the channel dim.

  • mode (Union[NumpyPadMode, PytorchPadMode, str, None]) – available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate", "circular"}. One of the listed string values or a user supplied function. Defaults to self.mode. See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html

Raises
  • ValueError – When self.spatial_border does not contain ints.

  • ValueError – When self.spatial_border length is not one of [1, len(spatial_shape), 2*len(spatial_shape)].

Return type

Union[ndarray, Tensor]

DivisiblePad

example of DivisiblePad
class monai.transforms.DivisiblePad(k, mode=NumpyPadMode.CONSTANT, method=Method.SYMMETRIC, **kwargs)[source]

Pad the input data, so that the spatial sizes are divisible by k.

Parameters
  • k (Union[Sequence[int], int]) – the target k for each spatial dimension. if k is negative or 0, the original size is preserved. if k is an int, the same k be applied to all the input spatial dimensions.

  • mode (Union[NumpyPadMode, PytorchPadMode, str]) – available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate", "circular"}. One of the listed string values or a user supplied function. Defaults to "constant". See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html

  • method (Union[Method, str]) – {"symmetric", "end"} Pad image symmetrically on every side or only pad at the end sides. Defaults to "symmetric".

  • kwargs – other arguments for the np.pad or torch.pad function. note that np.pad treats channel dimension as the first dimension.

See also monai.transforms.SpatialPad

__call__(img, mode=None)[source]
Parameters
  • img (Union[ndarray, Tensor]) – data to be transformed, assuming img is channel-first and padding doesn’t apply to the channel dim.

  • mode (Union[NumpyPadMode, PytorchPadMode, str, None]) – available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate", "circular"}. One of the listed string values or a user supplied function. Defaults to self.mode. See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html

Return type

Union[ndarray, Tensor]

__init__(k, mode=NumpyPadMode.CONSTANT, method=Method.SYMMETRIC, **kwargs)[source]
Parameters
  • k (Union[Sequence[int], int]) – the target k for each spatial dimension. if k is negative or 0, the original size is preserved. if k is an int, the same k be applied to all the input spatial dimensions.

  • mode (Union[NumpyPadMode, PytorchPadMode, str]) – available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate", "circular"}. One of the listed string values or a user supplied function. Defaults to "constant". See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html

  • method (Union[Method, str]) – {"symmetric", "end"} Pad image symmetrically on every side or only pad at the end sides. Defaults to "symmetric".

  • kwargs – other arguments for the np.pad or torch.pad function. note that np.pad treats channel dimension as the first dimension.

See also monai.transforms.SpatialPad

SpatialCrop

example of SpatialCrop
class monai.transforms.SpatialCrop(roi_center=None, roi_size=None, roi_start=None, roi_end=None, roi_slices=None)[source]

General purpose cropper to produce sub-volume region of interest (ROI). If a dimension of the expected ROI size is bigger than the input image size, will not crop that dimension. So the cropped result may be smaller than the expected ROI, and the cropped results of several images may not have exactly the same shape. It can support to crop ND spatial (channel-first) data.

The cropped region can be parameterised in various ways:
  • a list of slices for each spatial dimension (allows for use of -ve indexing and None)

  • a spatial center and size

  • the start and end coordinates of the ROI

Parameters
  • roi_center (Union[Sequence[int], ndarray, Tensor, None]) – voxel coordinates for center of the crop ROI.

  • roi_size (Union[Sequence[int], ndarray, Tensor, None]) – size of the crop ROI, if a dimension of ROI size is bigger than image size, will not crop that dimension of the image.

  • roi_start (Union[Sequence[int], ndarray, Tensor, None]) – voxel coordinates for start of the crop ROI.

  • roi_end (Union[Sequence[int], ndarray, Tensor, None]) – voxel coordinates for end of the crop ROI, if a coordinate is out of image, use the end coordinate of image.

  • roi_slices (Optional[Sequence[slice]]) – list of slices for each of the spatial dimensions.

__call__(img)[source]

Apply the transform to img, assuming img is channel-first and slicing doesn’t apply to the channel dim.

Return type

Union[ndarray, Tensor]

__init__(roi_center=None, roi_size=None, roi_start=None, roi_end=None, roi_slices=None)[source]
Parameters
  • roi_center (Union[Sequence[int], ndarray, Tensor, None]) – voxel coordinates for center of the crop ROI.

  • roi_size (Union[Sequence[int], ndarray, Tensor, None]) – size of the crop ROI, if a dimension of ROI size is bigger than image size, will not crop that dimension of the image.

  • roi_start (Union[Sequence[int], ndarray, Tensor, None]) – voxel coordinates for start of the crop ROI.

  • roi_end (Union[Sequence[int], ndarray, Tensor, None]) – voxel coordinates for end of the crop ROI, if a coordinate is out of image, use the end coordinate of image.

  • roi_slices (Optional[Sequence[slice]]) – list of slices for each of the spatial dimensions.

CenterSpatialCrop

example of CenterSpatialCrop
class monai.transforms.CenterSpatialCrop(roi_size)[source]

Crop at the center of image with specified ROI size. If a dimension of the expected ROI size is bigger than the input image size, will not crop that dimension. So the cropped result may be smaller than the expected ROI, and the cropped results of several images may not have exactly the same shape.

Parameters

roi_size (Union[Sequence[int], int]) – the spatial size of the crop region e.g. [224,224,128] if a dimension of ROI size is bigger than image size, will not crop that dimension of the image. If its components have non-positive values, the corresponding size of input image will be used. for example: if the spatial size of input data is [40, 40, 40] and roi_size=[32, 64, -1], the spatial size of output data will be [32, 40, 40].

__call__(img)[source]

Apply the transform to img, assuming img is channel-first and slicing doesn’t apply to the channel dim.

Return type

Union[ndarray, Tensor]

RandSpatialCrop

example of RandSpatialCrop
class monai.transforms.RandSpatialCrop(roi_size, max_roi_size=None, random_center=True, random_size=True)[source]

Crop image with random size or specific size ROI. It can crop at a random position as center or at the image center. And allows to set the minimum and maximum size to limit the randomly generated ROI.

Note: even random_size=False, if a dimension of the expected ROI size is bigger than the input image size, will not crop that dimension. So the cropped result may be smaller than the expected ROI, and the cropped results of several images may not have exactly the same shape.

Parameters
  • roi_size (Union[Sequence[int], int]) – if random_size is True, it specifies the minimum crop region. if random_size is False, it specifies the expected ROI size to crop. e.g. [224, 224, 128] if a dimension of ROI size is bigger than image size, will not crop that dimension of the image. If its components have non-positive values, the corresponding size of input image will be used. for example: if the spatial size of input data is [40, 40, 40] and roi_size=[32, 64, -1], the spatial size of output data will be [32, 40, 40].

  • max_roi_size (Union[Sequence[int], int, None]) – if random_size is True and roi_size specifies the min crop region size, max_roi_size can specify the max crop region size. if None, defaults to the input image size. if its components have non-positive values, the corresponding size of input image will be used.

  • random_center (bool) – crop at random position as center or the image center.

  • random_size (bool) – crop with random size or specific size ROI. if True, the actual size is sampled from randint(roi_size, max_roi_size + 1).

__call__(img)[source]

Apply the transform to img, assuming img is channel-first and slicing doesn’t apply to the channel dim.

Return type

Union[ndarray, Tensor]

randomize(img_size)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

None

RandSpatialCropSamples

example of RandSpatialCropSamples
class monai.transforms.RandSpatialCropSamples(roi_size, num_samples, max_roi_size=None, random_center=True, random_size=True)[source]

Crop image with random size or specific size ROI to generate a list of N samples. It can crop at a random position as center or at the image center. And allows to set the minimum size to limit the randomly generated ROI. It will return a list of cropped images.

Note: even random_size=False, if a dimension of the expected ROI size is bigger than the input image size, will not crop that dimension. So the cropped result may be smaller than the expected ROI, and the cropped results of several images may not have exactly the same shape.

Parameters
  • roi_size (Union[Sequence[int], int]) – if random_size is True, it specifies the minimum crop region. if random_size is False, it specifies the expected ROI size to crop. e.g. [224, 224, 128] if a dimension of ROI size is bigger than image size, will not crop that dimension of the image. If its components have non-positive values, the corresponding size of input image will be used. for example: if the spatial size of input data is [40, 40, 40] and roi_size=[32, 64, -1], the spatial size of output data will be [32, 40, 40].

  • num_samples (int) – number of samples (crop regions) to take in the returned list.

  • max_roi_size (Union[Sequence[int], int, None]) – if random_size is True and roi_size specifies the min crop region size, max_roi_size can specify the max crop region size. if None, defaults to the input image size. if its components have non-positive values, the corresponding size of input image will be used.

  • random_center (bool) – crop at random position as center or the image center.

  • random_size (bool) – crop with random size or specific size ROI. The actual size is sampled from randint(roi_size, img_size).

Raises

ValueError – When num_samples is nonpositive.

__call__(img)[source]

Apply the transform to img, assuming img is channel-first and cropping doesn’t change the channel dim.

Return type

List[Union[ndarray, Tensor]]

randomize(data=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

None

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandSpatialCropSamples

Returns

a Randomizable instance.

CropForeground

example of CropForeground
class monai.transforms.CropForeground(select_fn=<function is_positive>, channel_indices=None, margin=0, return_coords=False, k_divisible=1, mode=NumpyPadMode.CONSTANT, **np_kwargs)[source]

Crop an image using a bounding box. The bounding box is generated by selecting foreground using select_fn at channels channel_indices. margin is added in each spatial dimension of the bounding box. The typical usage is to help training and evaluation if the valid part is small in the whole medical image. Users can define arbitrary function to select expected foreground from the whole image or specified channels. And it can also add margin to every dim of the bounding box of foreground object. For example:

image = np.array(
    [[[0, 0, 0, 0, 0],
      [0, 1, 2, 1, 0],
      [0, 1, 3, 2, 0],
      [0, 1, 2, 1, 0],
      [0, 0, 0, 0, 0]]])  # 1x5x5, single channel 5x5 image


def threshold_at_one(x):
    # threshold at 1
    return x > 1


cropper = CropForeground(select_fn=threshold_at_one, margin=0)
print(cropper(image))
[[[2, 1],
  [3, 2],
  [2, 1]]]
Parameters
  • select_fn (Callable) – function to select expected foreground, default is to select values > 0.

  • channel_indices (Union[Iterable[int], int, None]) – if defined, select foreground only on the specified channels of image. if None, select foreground on the whole image.

  • margin (Union[Sequence[int], int]) – add margin value to spatial dims of the bounding box, if only 1 value provided, use it for all dims.

  • return_coords (bool) – whether return the coordinates of spatial bounding box for foreground.

  • k_divisible (Union[Sequence[int], int]) – make each spatial dimension to be divisible by k, default to 1. if k_divisible is an int, the same k be applied to all the input spatial dimensions.

  • mode (Union[NumpyPadMode, PytorchPadMode, str, None]) – available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate", "circular"}. One of the listed string values or a user supplied function. Defaults to "constant". See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html

  • np_kwargs – other args for np.pad API, note that np.pad treats channel dimension as the first dimension. more details: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html

__call__(img, mode=None)[source]

Apply the transform to img, assuming img is channel-first and slicing doesn’t change the channel dim.

__init__(select_fn=<function is_positive>, channel_indices=None, margin=0, return_coords=False, k_divisible=1, mode=NumpyPadMode.CONSTANT, **np_kwargs)[source]
Parameters
  • select_fn (Callable) – function to select expected foreground, default is to select values > 0.

  • channel_indices (Union[Iterable[int], int, None]) – if defined, select foreground only on the specified channels of image. if None, select foreground on the whole image.

  • margin (Union[Sequence[int], int]) – add margin value to spatial dims of the bounding box, if only 1 value provided, use it for all dims.

  • return_coords (bool) – whether return the coordinates of spatial bounding box for foreground.

  • k_divisible (Union[Sequence[int], int]) – make each spatial dimension to be divisible by k, default to 1. if k_divisible is an int, the same k be applied to all the input spatial dimensions.

  • mode (Union[NumpyPadMode, PytorchPadMode, str, None]) – available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate", "circular"}. One of the listed string values or a user supplied function. Defaults to "constant". See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html

  • np_kwargs – other args for np.pad API, note that np.pad treats channel dimension as the first dimension. more details: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html

compute_bounding_box(img)[source]

Compute the start points and end points of bounding box to crop. And adjust bounding box coords to be divisible by k.

crop_pad(img, box_start, box_end, mode=None)[source]

Crop and pad based on the bounding box.

RandWeightedCrop

example of RandWeightedCrop
class monai.transforms.RandWeightedCrop(spatial_size, num_samples=1, weight_map=None)[source]

Samples a list of num_samples image patches according to the provided weight_map.

Parameters
  • spatial_size (Union[Sequence[int], int]) – the spatial size of the image patch e.g. [224, 224, 128]. If its components have non-positive values, the corresponding size of img will be used.

  • num_samples (int) – number of samples (image patches) to take in the returned list.

  • weight_map (Union[ndarray, Tensor, None]) – weight map used to generate patch samples. The weights must be non-negative. Each element denotes a sampling weight of the spatial location. 0 indicates no sampling. It should be a single-channel array in shape, for example, (1, spatial_dim_0, spatial_dim_1, …).

__call__(img, weight_map=None)[source]
Parameters
  • img (Union[ndarray, Tensor]) – input image to sample patches from. assuming img is a channel-first array.

  • weight_map (Union[ndarray, Tensor, None]) – weight map used to generate patch samples. The weights must be non-negative. Each element denotes a sampling weight of the spatial location. 0 indicates no sampling. It should be a single-channel array in shape, for example, (1, spatial_dim_0, spatial_dim_1, …)

Return type

List[Union[ndarray, Tensor]]

Returns

A list of image patches

randomize(weight_map)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

None

RandCropByPosNegLabel

example of RandCropByPosNegLabel
class monai.transforms.RandCropByPosNegLabel(spatial_size, label=None, pos=1.0, neg=1.0, num_samples=1, image=None, image_threshold=0.0, fg_indices=None, bg_indices=None, allow_smaller=False)[source]

Crop random fixed sized regions with the center being a foreground or background voxel based on the Pos Neg Ratio. And will return a list of arrays for all the cropped images. For example, crop two (3 x 3) arrays from (5 x 5) array with pos/neg=1:

[[[0, 0, 0, 0, 0],
  [0, 1, 2, 1, 0],            [[0, 1, 2],     [[2, 1, 0],
  [0, 1, 3, 0, 0],     -->     [0, 1, 3],      [3, 0, 0],
  [0, 0, 0, 0, 0],             [0, 0, 0]]      [0, 0, 0]]
  [0, 0, 0, 0, 0]]]

If a dimension of the expected spatial size is bigger than the input image size, will not crop that dimension. So the cropped result may be smaller than expected size, and the cropped results of several images may not have exactly same shape.

Parameters
  • spatial_size (Union[Sequence[int], int]) – the spatial size of the crop region e.g. [224, 224, 128]. if a dimension of ROI size is bigger than image size, will not crop that dimension of the image. if its components have non-positive values, the corresponding size of label will be used. for example: if the spatial size of input data is [40, 40, 40] and spatial_size=[32, 64, -1], the spatial size of output data will be [32, 40, 40].

  • label (Union[ndarray, Tensor, None]) – the label image that is used for finding foreground/background, if None, must set at self.__call__. Non-zero indicates foreground, zero indicates background.

  • pos (float) – used with neg together to calculate the ratio pos / (pos + neg) for the probability to pick a foreground voxel as a center rather than a background voxel.

  • neg (float) – used with pos together to calculate the ratio pos / (pos + neg) for the probability to pick a foreground voxel as a center rather than a background voxel.

  • num_samples (int) – number of samples (crop regions) to take in each list.

  • image (Union[ndarray, Tensor, None]) – optional image data to help select valid area, can be same as img or another image array. if not None, use label == 0 & image > image_threshold to select the negative sample (background) center. So the crop center will only come from the valid image areas.

  • image_threshold (float) – if enabled image, use image > image_threshold to determine the valid image content areas.

  • fg_indices (Union[ndarray, Tensor, None]) – if provided pre-computed foreground indices of label, will ignore above image and image_threshold, and randomly select crop centers based on them, need to provide fg_indices and bg_indices together, expect to be 1 dim array of spatial indices after flattening. a typical usage is to call FgBgToIndices transform first and cache the results.

  • bg_indices (Union[ndarray, Tensor, None]) – if provided pre-computed background indices of label, will ignore above image and image_threshold, and randomly select crop centers based on them, need to provide fg_indices and bg_indices together, expect to be 1 dim array of spatial indices after flattening. a typical usage is to call FgBgToIndices transform first and cache the results.

  • allow_smaller (bool) – if False, an exception will be raised if the image is smaller than the requested ROI in any dimension. If True, any smaller dimensions will be set to match the cropped size (i.e., no cropping in that dimension).

Raises
  • ValueError – When pos or neg are negative.

  • ValueError – When pos=0 and neg=0. Incompatible values.

__call__(img, label=None, image=None, fg_indices=None, bg_indices=None)[source]
Parameters
  • img (Union[ndarray, Tensor]) – input data to crop samples from based on the pos/neg ratio of label and image. Assumes img is a channel-first array.

  • label (Union[ndarray, Tensor, None]) – the label image that is used for finding foreground/background, if None, use self.label.

  • image (Union[ndarray, Tensor, None]) – optional image data to help select valid area, can be same as img or another image array. use label == 0 & image > image_threshold to select the negative sample(background) center. so the crop center will only exist on valid image area. if None, use self.image.

  • fg_indices (Union[ndarray, Tensor, None]) – foreground indices to randomly select crop centers, need to provide fg_indices and bg_indices together.

  • bg_indices (Union[ndarray, Tensor, None]) – background indices to randomly select crop centers, need to provide fg_indices and bg_indices together.

Return type

List[Union[ndarray, Tensor]]

randomize(label, fg_indices=None, bg_indices=None, image=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

None

RandCropByLabelClasses

example of RandCropByLabelClasses
class monai.transforms.RandCropByLabelClasses(spatial_size, ratios=None, label=None, num_classes=None, num_samples=1, image=None, image_threshold=0.0, indices=None, allow_smaller=False)[source]

Crop random fixed sized regions with the center being a class based on the specified ratios of every class. The label data can be One-Hot format array or Argmax data. And will return a list of arrays for all the cropped images. For example, crop two (3 x 3) arrays from (5 x 5) array with ratios=[1, 2, 3, 1]:

image = np.array([
    [[0.0, 0.3, 0.4, 0.2, 0.0],
    [0.0, 0.1, 0.2, 0.1, 0.4],
    [0.0, 0.3, 0.5, 0.2, 0.0],
    [0.1, 0.2, 0.1, 0.1, 0.0],
    [0.0, 0.1, 0.2, 0.1, 0.0]]
])
label = np.array([
    [[0, 0, 0, 0, 0],
    [0, 1, 2, 1, 0],
    [0, 1, 3, 0, 0],
    [0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0]]
])
cropper = RandCropByLabelClasses(
    spatial_size=[3, 3],
    ratios=[1, 2, 3, 1],
    num_classes=4,
    num_samples=2,
)
label_samples = cropper(img=label, label=label, image=image)

The 2 randomly cropped samples of `label` can be:
[[0, 1, 2],     [[0, 0, 0],
 [0, 1, 3],      [1, 2, 1],
 [0, 0, 0]]      [1, 3, 0]]

If a dimension of the expected spatial size is bigger than the input image size, will not crop that dimension. So the cropped result may be smaller than expected size, and the cropped results of several images may not have exactly same shape.

Parameters
  • spatial_size (Union[Sequence[int], int]) – the spatial size of the crop region e.g. [224, 224, 128]. if a dimension of ROI size is bigger than image size, will not crop that dimension of the image. if its components have non-positive values, the corresponding size of label will be used. for example: if the spatial size of input data is [40, 40, 40] and spatial_size=[32, 64, -1], the spatial size of output data will be [32, 40, 40].

  • ratios (Optional[List[Union[float, int]]]) – specified ratios of every class in the label to generate crop centers, including background class. if None, every class will have the same ratio to generate crop centers.

  • label (Union[ndarray, Tensor, None]) – the label image that is used for finding every classes, if None, must set at self.__call__.

  • num_classes (Optional[int]) – number of classes for argmax label, not necessary for One-Hot label.

  • num_samples (int) – number of samples (crop regions) to take in each list.

  • image (Union[ndarray, Tensor, None]) – if image is not None, only return the indices of every class that are within the valid region of the image (image > image_threshold).

  • image_threshold (float) – if enabled image, use image > image_threshold to determine the valid image content area and select class indices only in this area.

  • indices (Optional[List[Union[ndarray, Tensor]]]) – if provided pre-computed indices of every class, will ignore above image and image_threshold, and randomly select crop centers based on them, expect to be 1 dim array of spatial indices after flattening. a typical usage is to call ClassesToIndices transform first and cache the results for better performance.

  • allow_smaller (bool) – if False, an exception will be raised if the image is smaller than the requested ROI in any dimension. If True, any smaller dimensions will remain unchanged.

__call__(img, label=None, image=None, indices=None)[source]
Parameters
  • img (Union[ndarray, Tensor]) – input data to crop samples from based on the ratios of every class, assumes img is a channel-first array.

  • label (Union[ndarray, Tensor, None]) – the label image that is used for finding indices of every class, if None, use self.label.

  • image (Union[ndarray, Tensor, None]) – optional image data to help select valid area, can be same as img or another image array. use image > image_threshold to select the centers only in valid region. if None, use self.image.

  • indices (Optional[List[Union[ndarray, Tensor]]]) – list of indices for every class in the image, used to randomly select crop centers.

Return type

List[Union[ndarray, Tensor]]

randomize(label, indices=None, image=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

None

ResizeWithPadOrCrop

example of ResizeWithPadOrCrop
class monai.transforms.ResizeWithPadOrCrop(spatial_size, mode=NumpyPadMode.CONSTANT, method=Method.SYMMETRIC, **np_kwargs)[source]

Resize an image to a target spatial size by either centrally cropping the image or padding it evenly with a user-specified mode. When the dimension is smaller than the target size, do symmetric padding along that dim. When the dimension is larger than the target size, do central cropping along that dim.

Parameters
  • spatial_size (Union[Sequence[int], int]) – the spatial size of output data after padding or crop. If has non-positive values, the corresponding size of input image will be used (no padding).

  • mode (Union[NumpyPadMode, str]) – {"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} One of the listed string values or a user supplied function for padding. Defaults to "constant". See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html

  • method (Union[Method, str]) – {"symmetric", "end"} Pad image symmetrically on every side or only pad at the end sides. Defaults to "symmetric".

  • np_kwargs – other args for np.pad API, note that np.pad treats channel dimension as the first dimension. more details: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html

__call__(img, mode=None)[source]
Parameters
  • img (Union[ndarray, Tensor]) – data to pad or crop, assuming img is channel-first and padding or cropping doesn’t apply to the channel dim.

  • mode (Union[NumpyPadMode, str, None]) – {"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} One of the listed string values or a user supplied function for padding. If None, defaults to the mode in construction. See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html

Return type

Union[ndarray, Tensor]

BoundingRect

class monai.transforms.BoundingRect(select_fn=<function is_positive>)[source]

Compute coordinates of axis-aligned bounding rectangles from input image img. The output format of the coordinates is (shape is [channel, 2 * spatial dims]):

[[1st_spatial_dim_start, 1st_spatial_dim_end,

2nd_spatial_dim_start, 2nd_spatial_dim_end, …, Nth_spatial_dim_start, Nth_spatial_dim_end],

[1st_spatial_dim_start, 1st_spatial_dim_end, 2nd_spatial_dim_start, 2nd_spatial_dim_end, …, Nth_spatial_dim_start, Nth_spatial_dim_end]]

The bounding boxes edges are aligned with the input image edges. This function returns [-1, -1, …] if there’s no positive intensity.

Parameters

select_fn (Callable) – function to select expected foreground, default is to select values > 0.

__call__(img)[source]

See also: monai.transforms.utils.generate_spatial_bounding_box.

Return type

ndarray

RandScaleCrop

example of RandScaleCrop
class monai.transforms.RandScaleCrop(roi_scale, max_roi_scale=None, random_center=True, random_size=True)[source]

Subclass of monai.transforms.RandSpatialCrop. Crop image with random size or specific size ROI. It can crop at a random position as center or at the image center. And allows to set the minimum and maximum scale of image size to limit the randomly generated ROI.

Parameters
  • roi_scale (Union[Sequence[float], float]) – if random_size is True, it specifies the minimum crop size: roi_scale * image spatial size. if random_size is False, it specifies the expected scale of image size to crop. e.g. [0.3, 0.4, 0.5]. If its components have non-positive values, will use 1.0 instead, which means the input image size.

  • max_roi_scale (Union[Sequence[float], float, None]) – if random_size is True and roi_scale specifies the min crop region size, max_roi_scale can specify the max crop region size: max_roi_scale * image spatial size. if None, defaults to the input image size. if its components have non-positive values, will use 1.0 instead, which means the input image size.

  • random_center (bool) – crop at random position as center or the image center.

  • random_size (bool) – crop with random size or specified size ROI by roi_scale * image spatial size. if True, the actual size is sampled from randint(roi_scale * image spatial size, max_roi_scale * image spatial size + 1).

__call__(img)[source]

Apply the transform to img, assuming img is channel-first and slicing doesn’t apply to the channel dim.

Return type

Union[ndarray, Tensor]

CenterScaleCrop

example of CenterScaleCrop
class monai.transforms.CenterScaleCrop(roi_scale)[source]

Crop at the center of image with specified scale of ROI size.

Parameters

roi_scale (Union[Sequence[float], float]) – specifies the expected scale of image size to crop. e.g. [0.3, 0.4, 0.5] or a number for all dims. If its components have non-positive values, will use 1.0 instead, which means the input image size.

__call__(img)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Union[ndarray, Tensor]

Intensity

RandGaussianNoise

example of RandGaussianNoise
class monai.transforms.RandGaussianNoise(prob=0.1, mean=0.0, std=0.1, dtype=<class 'numpy.float32'>)[source]

Add Gaussian noise to image.

Parameters
  • prob (float) – Probability to add Gaussian noise.

  • mean (float) – Mean or “centre” of the distribution.

  • std (float) – Standard deviation (spread) of distribution.

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

__call__(img, mean=None, randomize=True)[source]

Apply the transform to img.

Return type

Union[ndarray, Tensor]

randomize(img, mean=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

ShiftIntensity

example of ShiftIntensity
class monai.transforms.ShiftIntensity(offset)[source]

Shift intensity uniformly for the entire image with specified offset.

Parameters

offset (float) – offset value to shift the intensity of image.

__call__(img, offset=None)[source]

Apply the transform to img.

Return type

Union[ndarray, Tensor]

RandShiftIntensity

example of RandShiftIntensity
class monai.transforms.RandShiftIntensity(offsets, prob=0.1)[source]

Randomly shift intensity with randomly picked offset.

Parameters
  • offsets (Union[Tuple[float, float], float]) – offset range to randomly shift. if single number, offset value is picked from (-offsets, offsets).

  • prob (float) – probability of shift.

__call__(img, factor=None, randomize=True)[source]

Apply the transform to img.

Parameters
  • img (Union[ndarray, Tensor]) – input image to shift intensity.

  • factor (Optional[float]) – a factor to multiply the random offset, then shift. can be some image specific value at runtime, like: max(img), etc.

Return type

Union[ndarray, Tensor]

__init__(offsets, prob=0.1)[source]
Parameters
  • offsets (Union[Tuple[float, float], float]) – offset range to randomly shift. if single number, offset value is picked from (-offsets, offsets).

  • prob (float) – probability of shift.

randomize(data=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

StdShiftIntensity

example of StdShiftIntensity
class monai.transforms.StdShiftIntensity(factor, nonzero=False, channel_wise=False, dtype=<class 'numpy.float32'>)[source]

Shift intensity for the image with a factor and the standard deviation of the image by: v = v + factor * std(v). This transform can focus on only non-zero values or the entire image, and can also calculate the std on each channel separately.

Parameters
  • factor (float) – factor shift by v = v + factor * std(v).

  • nonzero (bool) – whether only count non-zero values.

  • channel_wise (bool) – if True, calculate on each channel separately. Please ensure that the first dimension represents the channel of the image if True.

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

__call__(img)[source]

Apply the transform to img.

Return type

Union[ndarray, Tensor]

RandStdShiftIntensity

example of RandStdShiftIntensity
class monai.transforms.RandStdShiftIntensity(factors, prob=0.1, nonzero=False, channel_wise=False, dtype=<class 'numpy.float32'>)[source]

Shift intensity for the image with a factor and the standard deviation of the image by: v = v + factor * std(v) where the factor is randomly picked.

Parameters
  • factors (Union[Tuple[float, float], float]) – if tuple, the randomly picked range is (min(factors), max(factors)). If single number, the range is (-factors, factors).

  • prob (float) – probability of std shift.

  • nonzero (bool) – whether only count non-zero values.

  • channel_wise (bool) – if True, calculate on each channel separately.

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

__call__(img, randomize=True)[source]

Apply the transform to img.

Return type

Union[ndarray, Tensor]

__init__(factors, prob=0.1, nonzero=False, channel_wise=False, dtype=<class 'numpy.float32'>)[source]
Parameters
  • factors (Union[Tuple[float, float], float]) – if tuple, the randomly picked range is (min(factors), max(factors)). If single number, the range is (-factors, factors).

  • prob (float) – probability of std shift.

  • nonzero (bool) – whether only count non-zero values.

  • channel_wise (bool) – if True, calculate on each channel separately.

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

randomize(data=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

RandBiasField

example of RandBiasField
class monai.transforms.RandBiasField(degree=3, coeff_range=(0.0, 0.1), dtype=<class 'numpy.float32'>, prob=0.1)[source]

Random bias field augmentation for MR images. The bias field is considered as a linear combination of smoothly varying basis (polynomial) functions, as described in Automated Model-Based Tissue Classification of MR Images of the Brain. This implementation adapted from NiftyNet. Referred to Longitudinal segmentation of age-related white matter hyperintensities.

Parameters
  • degree (int) – degree of freedom of the polynomials. The value should be no less than 1. Defaults to 3.

  • coeff_range (Tuple[float, float]) – range of the random coefficients. Defaults to (0.0, 0.1).

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

  • prob (float) – probability to do random bias field.

__call__(img, randomize=True)[source]

Apply the transform to img.

Return type

Union[ndarray, Tensor]

randomize(img_size)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

ScaleIntensity

example of ScaleIntensity
class monai.transforms.ScaleIntensity(minv=0.0, maxv=1.0, factor=None, channel_wise=False, dtype=<class 'numpy.float32'>)[source]

Scale the intensity of input image to the given value range (minv, maxv). If minv and maxv not provided, use factor to scale image by v = v * (1 + factor).

Parameters
  • minv (Optional[float]) – minimum value of output data.

  • maxv (Optional[float]) – maximum value of output data.

  • factor (Optional[float]) – factor scale by v = v * (1 + factor). In order to use this parameter, please set both minv and maxv into None.

  • channel_wise (bool) – if True, scale on each channel separately. Please ensure that the first dimension represents the channel of the image if True.

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

__call__(img)[source]

Apply the transform to img.

Raises

ValueError – When self.minv=None or self.maxv=None and self.factor=None. Incompatible values.

Return type

Union[ndarray, Tensor]

__init__(minv=0.0, maxv=1.0, factor=None, channel_wise=False, dtype=<class 'numpy.float32'>)[source]
Parameters
  • minv (Optional[float]) – minimum value of output data.

  • maxv (Optional[float]) – maximum value of output data.

  • factor (Optional[float]) – factor scale by v = v * (1 + factor). In order to use this parameter, please set both minv and maxv into None.

  • channel_wise (bool) – if True, scale on each channel separately. Please ensure that the first dimension represents the channel of the image if True.

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

RandScaleIntensity

example of RandScaleIntensity
class monai.transforms.RandScaleIntensity(factors, prob=0.1, dtype=<class 'numpy.float32'>)[source]

Randomly scale the intensity of input image by v = v * (1 + factor) where the factor is randomly picked.

Parameters
  • factors (Union[Tuple[float, float], float]) – factor range to randomly scale by v = v * (1 + factor). if single number, factor value is picked from (-factors, factors).

  • prob (float) – probability of scale.

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

__call__(img, randomize=True)[source]

Apply the transform to img.

Return type

Union[ndarray, Tensor]

__init__(factors, prob=0.1, dtype=<class 'numpy.float32'>)[source]
Parameters
  • factors (Union[Tuple[float, float], float]) – factor range to randomly scale by v = v * (1 + factor). if single number, factor value is picked from (-factors, factors).

  • prob (float) – probability of scale.

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

randomize(data=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

NormalizeIntensity

example of NormalizeIntensity
class monai.transforms.NormalizeIntensity(subtrahend=None, divisor=None, nonzero=False, channel_wise=False, dtype=<class 'numpy.float32'>)[source]

Normalize input based on provided args, using calculated mean and std if not provided. This transform can normalize only non-zero values or entire image, and can also calculate mean and std on each channel separately. When channel_wise is True, the first dimension of subtrahend and divisor should be the number of image channels if they are not None.

Parameters
  • subtrahend (Union[Sequence, ndarray, Tensor, None]) – the amount to subtract by (usually the mean).

  • divisor (Union[Sequence, ndarray, Tensor, None]) – the amount to divide by (usually the standard deviation).

  • nonzero (bool) – whether only normalize non-zero values.

  • channel_wise (bool) – if using calculated mean and std, calculate on each channel separately or calculate on the entire image directly.

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

__call__(img)[source]

Apply the transform to img, assuming img is a channel-first array if self.channel_wise is True,

Return type

Union[ndarray, Tensor]

ThresholdIntensity

example of ThresholdIntensity
class monai.transforms.ThresholdIntensity(threshold, above=True, cval=0.0)[source]

Filter the intensity values of whole image to below threshold or above threshold. And fill the remaining parts of the image to the cval value.

Parameters
  • threshold (float) – the threshold to filter intensity values.

  • above (bool) – filter values above the threshold or below the threshold, default is True.

  • cval (float) – value to fill the remaining parts of the image, default is 0.

__call__(img)[source]

Apply the transform to img.

Return type

Union[ndarray, Tensor]

ScaleIntensityRange

example of ScaleIntensityRange
class monai.transforms.ScaleIntensityRange(a_min, a_max, b_min=None, b_max=None, clip=False, dtype=<class 'numpy.float32'>)[source]

Apply specific intensity scaling to the whole numpy array. Scaling from [a_min, a_max] to [b_min, b_max] with clip option.

When b_min or b_max are None, scacled_array * (b_max - b_min) + b_min will be skipped. If clip=True, when b_min/b_max is None, the clipping is not performed on the corresponding edge.

Parameters
  • a_min (float) – intensity original range min.

  • a_max (float) – intensity original range max.

  • b_min (Optional[float]) – intensity target range min.

  • b_max (Optional[float]) – intensity target range max.

  • clip (bool) – whether to perform clip after scaling.

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

__call__(img)[source]

Apply the transform to img.

Return type

Union[ndarray, Tensor]

ScaleIntensityRangePercentiles

example of ScaleIntensityRangePercentiles
class monai.transforms.ScaleIntensityRangePercentiles(lower, upper, b_min, b_max, clip=False, relative=False, dtype=<class 'numpy.float32'>)[source]

Apply range scaling to a numpy array based on the intensity distribution of the input.

By default this transform will scale from [lower_intensity_percentile, upper_intensity_percentile] to [b_min, b_max], where {lower,upper}_intensity_percentile are the intensity values at the corresponding percentiles of img.

The relative parameter can also be set to scale from [lower_intensity_percentile, upper_intensity_percentile] to the lower and upper percentiles of the output range [b_min, b_max].

For example:

image = np.array(
    [[[1, 2, 3, 4, 5],
      [1, 2, 3, 4, 5],
      [1, 2, 3, 4, 5],
      [1, 2, 3, 4, 5],
      [1, 2, 3, 4, 5],
      [1, 2, 3, 4, 5]]])

# Scale from lower and upper image intensity percentiles
# to output range [b_min, b_max]
scaler = ScaleIntensityRangePercentiles(10, 90, 0, 200, False, False)
print(scaler(image))
[[[0., 50., 100., 150., 200.],
  [0., 50., 100., 150., 200.],
  [0., 50., 100., 150., 200.],
  [0., 50., 100., 150., 200.],
  [0., 50., 100., 150., 200.],
  [0., 50., 100., 150., 200.]]]

# Scale from lower and upper image intensity percentiles
# to lower and upper percentiles of the output range [b_min, b_max]
rel_scaler = ScaleIntensityRangePercentiles(10, 90, 0, 200, False, True)
print(rel_scaler(image))
[[[20., 60., 100., 140., 180.],
  [20., 60., 100., 140., 180.],
  [20., 60., 100., 140., 180.],
  [20., 60., 100., 140., 180.],
  [20., 60., 100., 140., 180.],
  [20., 60., 100., 140., 180.]]]
Parameters
  • lower (float) – lower intensity percentile.

  • upper (float) – upper intensity percentile.

  • b_min (Optional[float]) – intensity target range min.

  • b_max (Optional[float]) – intensity target range max.

  • clip (bool) – whether to perform clip after scaling.

  • relative (bool) – whether to scale to the corresponding percentiles of [b_min, b_max].

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

__call__(img)[source]

Apply the transform to img.

Return type

Union[ndarray, Tensor]

AdjustContrast

example of AdjustContrast
class monai.transforms.AdjustContrast(gamma)[source]

Changes image intensity by gamma. Each pixel/voxel intensity is updated as:

x = ((x - min) / intensity_range) ^ gamma * intensity_range + min
Parameters

gamma (float) – gamma value to adjust the contrast as function.

__call__(img)[source]

Apply the transform to img.

Return type

Union[ndarray, Tensor]

RandAdjustContrast

example of RandAdjustContrast
class monai.transforms.RandAdjustContrast(prob=0.1, gamma=(0.5, 4.5))[source]

Randomly changes image intensity by gamma. Each pixel/voxel intensity is updated as:

x = ((x - min) / intensity_range) ^ gamma * intensity_range + min
Parameters
  • prob (float) – Probability of adjustment.

  • gamma (Union[Sequence[float], float]) – Range of gamma values. If single number, value is picked from (0.5, gamma), default is (0.5, 4.5).

__call__(img, randomize=True)[source]

Apply the transform to img.

Return type

Union[ndarray, Tensor]

randomize(data=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

MaskIntensity

example of MaskIntensity
class monai.transforms.MaskIntensity(mask_data=None, select_fn=<function is_positive>)[source]

Mask the intensity values of input image with the specified mask data. Mask data must have the same spatial size as the input image, and all the intensity values of input image corresponding to the selected values in the mask data will keep the original value, others will be set to 0.

Parameters
  • mask_data (Union[ndarray, Tensor, None]) – if mask_data is single channel, apply to every channel of input image. if multiple channels, the number of channels must match the input data. the intensity values of input image corresponding to the selected values in the mask data will keep the original value, others will be set to 0. if None, must specify the mask_data at runtime.

  • select_fn (Callable) – function to select valid values of the mask_data, default is to select values > 0.

__call__(img, mask_data=None)[source]
Parameters

mask_data (Union[ndarray, Tensor, None]) – if mask data is single channel, apply to every channel of input image. if multiple channels, the channel number must match input data. mask_data will be converted to bool values by mask_data > 0 before applying transform to input image.

Raises
  • - ValueError – When both mask_data and self.mask_data are None.

  • - ValueError – When mask_data and img channels differ and mask_data is not single channel.

Return type

Union[ndarray, Tensor]

SavitzkyGolaySmooth

class monai.transforms.SavitzkyGolaySmooth(window_length, order, axis=1, mode='zeros')[source]

Smooth the input data along the given axis using a Savitzky-Golay filter.

Parameters
  • window_length (int) – Length of the filter window, must be a positive odd integer.

  • order (int) – Order of the polynomial to fit to each window, must be less than window_length.

  • axis (int) – Optional axis along which to apply the filter kernel. Default 1 (first spatial dimension).

  • mode (str) – Optional padding mode, passed to convolution class. 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'. See torch.nn.Conv1d() for more information.

__call__(img)[source]
Parameters

img (Union[ndarray, Tensor]) – array containing input data. Must be real and in shape [channels, spatial1, spatial2, …].

Return type

Union[ndarray, Tensor]

Returns

array containing smoothed result.

GaussianSmooth

example of GaussianSmooth
class monai.transforms.GaussianSmooth(sigma=1.0, approx='erf')[source]

Apply Gaussian smooth to the input data based on specified sigma parameter. A default value sigma=1.0 is provided for reference.

Parameters
  • sigma (Union[Sequence[float], float]) – if a list of values, must match the count of spatial dimensions of input data, and apply every value in the list to 1 spatial dimension. if only 1 value provided, use it for all spatial dimensions.

  • approx (str) – discrete Gaussian kernel type, available options are “erf”, “sampled”, and “scalespace”. see also monai.networks.layers.GaussianFilter().

__call__(img)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Union[ndarray, Tensor]

RandGaussianSmooth

example of RandGaussianSmooth
class monai.transforms.RandGaussianSmooth(sigma_x=(0.25, 1.5), sigma_y=(0.25, 1.5), sigma_z=(0.25, 1.5), prob=0.1, approx='erf')[source]

Apply Gaussian smooth to the input data based on randomly selected sigma parameters.

Parameters
  • sigma_x (Tuple[float, float]) – randomly select sigma value for the first spatial dimension.

  • sigma_y (Tuple[float, float]) – randomly select sigma value for the second spatial dimension if have.

  • sigma_z (Tuple[float, float]) – randomly select sigma value for the third spatial dimension if have.

  • prob (float) – probability of Gaussian smooth.

  • approx (str) – discrete Gaussian kernel type, available options are “erf”, “sampled”, and “scalespace”. see also monai.networks.layers.GaussianFilter().

__call__(img, randomize=True)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Union[ndarray, Tensor]

randomize(data=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

GaussianSharpen

example of GaussianSharpen
class monai.transforms.GaussianSharpen(sigma1=3.0, sigma2=1.0, alpha=30.0, approx='erf')[source]

Sharpen images using the Gaussian Blur filter. Referring to: http://scipy-lectures.org/advanced/image_processing/auto_examples/plot_sharpen.html. The algorithm is shown as below

blurred_f = gaussian_filter(img, sigma1)
filter_blurred_f = gaussian_filter(blurred_f, sigma2)
img = blurred_f + alpha * (blurred_f - filter_blurred_f)

A set of default values sigma1=3.0, sigma2=1.0 and alpha=30.0 is provide for reference.

Parameters
  • sigma1 (Union[Sequence[float], float]) – sigma parameter for the first gaussian kernel. if a list of values, must match the count of spatial dimensions of input data, and apply every value in the list to 1 spatial dimension. if only 1 value provided, use it for all spatial dimensions.

  • sigma2 (Union[Sequence[float], float]) – sigma parameter for the second gaussian kernel. if a list of values, must match the count of spatial dimensions of input data, and apply every value in the list to 1 spatial dimension. if only 1 value provided, use it for all spatial dimensions.

  • alpha (float) – weight parameter to compute the final result.

  • approx (str) – discrete Gaussian kernel type, available options are “erf”, “sampled”, and “scalespace”. see also monai.networks.layers.GaussianFilter().

__call__(img)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Union[ndarray, Tensor]

RandGaussianSharpen

example of RandGaussianSharpen
class monai.transforms.RandGaussianSharpen(sigma1_x=(0.5, 1.0), sigma1_y=(0.5, 1.0), sigma1_z=(0.5, 1.0), sigma2_x=0.5, sigma2_y=0.5, sigma2_z=0.5, alpha=(10.0, 30.0), approx='erf', prob=0.1)[source]

Sharpen images using the Gaussian Blur filter based on randomly selected sigma1, sigma2 and alpha. The algorithm is monai.transforms.GaussianSharpen.

Parameters
  • sigma1_x (Tuple[float, float]) – randomly select sigma value for the first spatial dimension of first gaussian kernel.

  • sigma1_y (Tuple[float, float]) – randomly select sigma value for the second spatial dimension(if have) of first gaussian kernel.

  • sigma1_z (Tuple[float, float]) – randomly select sigma value for the third spatial dimension(if have) of first gaussian kernel.

  • sigma2_x (Union[Tuple[float, float], float]) – randomly select sigma value for the first spatial dimension of second gaussian kernel. if only 1 value X provided, it must be smaller than sigma1_x and randomly select from [X, sigma1_x].

  • sigma2_y (Union[Tuple[float, float], float]) – randomly select sigma value for the second spatial dimension(if have) of second gaussian kernel. if only 1 value Y provided, it must be smaller than sigma1_y and randomly select from [Y, sigma1_y].

  • sigma2_z (Union[Tuple[float, float], float]) – randomly select sigma value for the third spatial dimension(if have) of second gaussian kernel. if only 1 value Z provided, it must be smaller than sigma1_z and randomly select from [Z, sigma1_z].

  • alpha (Tuple[float, float]) – randomly select weight parameter to compute the final result.

  • approx (str) – discrete Gaussian kernel type, available options are “erf”, “sampled”, and “scalespace”. see also monai.networks.layers.GaussianFilter().

  • prob (float) – probability of Gaussian sharpen.

__call__(img, randomize=True)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Union[ndarray, Tensor]

randomize(data=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

RandHistogramShift

example of RandHistogramShift
class monai.transforms.RandHistogramShift(num_control_points=10, prob=0.1)[source]

Apply random nonlinear transform to the image’s intensity histogram.

Parameters
  • num_control_points (Union[Tuple[int, int], int]) – number of control points governing the nonlinear intensity mapping. a smaller number of control points allows for larger intensity shifts. if two values provided, number of control points selecting from range (min_value, max_value).

  • prob (float) – probability of histogram shift.

__call__(img, randomize=True)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Union[ndarray, Tensor]

randomize(data=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

DetectEnvelope

class monai.transforms.DetectEnvelope(axis=1, n=None)[source]

Find the envelope of the input data along the requested axis using a Hilbert transform. Requires PyTorch 1.7.0+ and the PyTorch FFT module (which is not included in NVIDIA PyTorch Release 20.10).

Parameters
  • axis (int) – Axis along which to detect the envelope. Default 1, i.e. the first spatial dimension.

  • N – FFT size. Default img.shape[axis]. Input will be zero-padded or truncated to this size along dimension

  • axis.

__call__(img)[source]
Parameters

img (Union[ndarray, Tensor]) – numpy.ndarray containing input data. Must be real and in shape [channels, spatial1, spatial2, …].

Returns

np.ndarray containing envelope of data in img along the specified axis.

GibbsNoise

example of GibbsNoise
class monai.transforms.GibbsNoise(alpha=0.1, as_tensor_output=True)[source]

The transform applies Gibbs noise to 2D/3D MRI images. Gibbs artifacts are one of the common type of type artifacts appearing in MRI scans.

The transform is applied to all the channels in the data.

For general information on Gibbs artifacts, please refer to:

An Image-based Approach to Understanding the Physics of MR Artifacts.

The AAPM/RSNA Physics Tutorial for Residents

Parameters

alpha (float) – Parametrizes the intensity of the Gibbs noise filter applied. Takes values in the interval [0,1] with alpha = 0 acting as the identity mapping.

__call__(img)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Union[ndarray, Tensor]

RandGibbsNoise

example of RandGibbsNoise
class monai.transforms.RandGibbsNoise(prob=0.1, alpha=(0.0, 1.0), as_tensor_output=True)[source]

Naturalistic image augmentation via Gibbs artifacts. The transform randomly applies Gibbs noise to 2D/3D MRI images. Gibbs artifacts are one of the common type of type artifacts appearing in MRI scans.

The transform is applied to all the channels in the data.

For general information on Gibbs artifacts, please refer to: https://pubs.rsna.org/doi/full/10.1148/rg.313105115 https://pubs.rsna.org/doi/full/10.1148/radiographics.22.4.g02jl14949

Parameters
  • prob (float) – probability of applying the transform.

  • alpha (Sequence(float)) – Parametrizes the intensity of the Gibbs noise filter applied. Takes values in the interval [0,1] with alpha = 0 acting as the identity mapping. If a length-2 list is given as [a,b] then the value of alpha will be sampled uniformly from the interval [a,b]. 0 <= a <= b <= 1.

__call__(img, randomize=True)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

randomize(data)[source]
  1. Set random variable to apply the transform.

  2. Get alpha from uniform distribution.

Return type

None

KSpaceSpikeNoise

example of KSpaceSpikeNoise
class monai.transforms.KSpaceSpikeNoise(loc, k_intensity=None, as_tensor_output=True)[source]

Apply localized spikes in k-space at the given locations and intensities. Spike (Herringbone) artifact is a type of data acquisition artifact which may occur during MRI scans.

For general information on spike artifacts, please refer to:

AAPM/RSNA physics tutorial for residents: fundamental physics of MR imaging.

Body MRI artifacts in clinical practice: A physicist’s and radiologist’s perspective.

Parameters
  • loc (Union[Tuple, Sequence[Tuple]]) – spatial location for the spikes. For images with 3D spatial dimensions, the user can provide (C, X, Y, Z) to fix which channel C is affected, or (X, Y, Z) to place the same spike in all channels. For 2D cases, the user can provide (C, X, Y) or (X, Y).

  • k_intensity (Union[Sequence[float], float, None]) – value for the log-intensity of the k-space version of the image. If one location is passed to loc or the channel is not specified, then this argument should receive a float. If loc is given a sequence of locations, then this argument should receive a sequence of intensities. This value should be tested as it is data-dependent. The default values are the 2.5 the mean of the log-intensity for each channel.

Example

When working with 4D data, KSpaceSpikeNoise(loc = ((3,60,64,32), (64,60,32)), k_intensity = (13,14)) will place a spike at [3, 60, 64, 32] with log-intensity = 13, and one spike per channel located respectively at [: , 64, 60, 32] with log-intensity = 14.

__call__(img)[source]
Parameters

img (Union[ndarray, Tensor]) – image with dimensions (C, H, W) or (C, H, W, D)

Return type

Union[ndarray, Tensor]

RandKSpaceSpikeNoise

example of RandKSpaceSpikeNoise
class monai.transforms.RandKSpaceSpikeNoise(prob=0.1, intensity_range=None, channel_wise=True, as_tensor_output=True)[source]

Naturalistic data augmentation via spike artifacts. The transform applies localized spikes in k-space, and it is the random version of monai.transforms.KSpaceSpikeNoise.

Spike (Herringbone) artifact is a type of data acquisition artifact which may occur during MRI scans. For general information on spike artifacts, please refer to:

AAPM/RSNA physics tutorial for residents: fundamental physics of MR imaging.

Body MRI artifacts in clinical practice: A physicist’s and radiologist’s perspective.

Parameters
  • prob (float) – probability of applying the transform, either on all channels at once, or channel-wise if channel_wise = True.

  • intensity_range (Optional[Sequence[Union[Sequence[float], float]]]) – pass a tuple (a, b) to sample the log-intensity from the interval (a, b) uniformly for all channels. Or pass sequence of intervals ((a0, b0), (a1, b1), …) to sample for each respective channel. In the second case, the number of 2-tuples must match the number of channels. Default ranges is (0.95x, 1.10x) where x is the mean log-intensity for each channel.

  • channel_wise (bool) – treat each channel independently. True by default.

Example

To apply k-space spikes randomly with probability 0.5, and log-intensity sampled from the interval [11, 12] for each channel independently, one uses RandKSpaceSpikeNoise(prob=0.5, intensity_range=(11, 12), channel_wise=True)

__call__(img, randomize=True)[source]

Apply transform to img. Assumes data is in channel-first form.

Parameters

img (Union[ndarray, Tensor]) – image with dimensions (C, H, W) or (C, H, W, D)

randomize(img, intensity_range)[source]

Helper method to sample both the location and intensity of the spikes. When not working channel wise (channel_wise=False) it use the random variable self._do_transform to decide whether to sample a location and intensity.

When working channel wise, the method randomly samples a location and intensity for each channel depending on self._do_transform.

Return type

None

RandCoarseTransform

class monai.transforms.RandCoarseTransform(holes, spatial_size, max_holes=None, max_spatial_size=None, prob=0.1)[source]

Randomly select coarse regions in the image, then execute transform operations for the regions. It’s the base class of all kinds of region transforms. Refer to papers: https://arxiv.org/abs/1708.04552

Parameters
  • holes (int) – number of regions to dropout, if max_holes is not None, use this arg as the minimum number to randomly select the expected number of regions.

  • spatial_size (Union[Sequence[int], int]) – spatial size of the regions to dropout, if max_spatial_size is not None, use this arg as the minimum spatial size to randomly select size for every region. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of input img size. For example, spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • max_holes (Optional[int]) – if not None, define the maximum number to randomly select the expected number of regions.

  • max_spatial_size (Union[Sequence[int], int, None]) – if not None, define the maximum spatial size to randomly select size for every region. if some components of the max_spatial_size are non-positive values, the transform will use the corresponding components of input img size. For example, max_spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • prob (float) – probability of applying the transform.

__call__(img, randomize=True)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Union[ndarray, Tensor]

randomize(img_size)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

RandCoarseDropout

example of RandCoarseDropout
class monai.transforms.RandCoarseDropout(holes, spatial_size, dropout_holes=True, fill_value=None, max_holes=None, max_spatial_size=None, prob=0.1)[source]

Randomly coarse dropout regions in the image, then fill in the rectangular regions with specified value. Or keep the rectangular regions and fill in the other areas with specified value. Refer to papers: https://arxiv.org/abs/1708.04552, https://arxiv.org/pdf/1604.07379 And other implementation: https://albumentations.ai/docs/api_reference/augmentations/transforms/ #albumentations.augmentations.transforms.CoarseDropout.

Parameters
  • holes (int) – number of regions to dropout, if max_holes is not None, use this arg as the minimum number to randomly select the expected number of regions.

  • spatial_size (Union[Sequence[int], int]) – spatial size of the regions to dropout, if max_spatial_size is not None, use this arg as the minimum spatial size to randomly select size for every region. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of input img size. For example, spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • dropout_holes (bool) – if True, dropout the regions of holes and fill value, if False, keep the holes and dropout the outside and fill value. default to True.

  • fill_value (Union[Tuple[float, float], float, None]) – target value to fill the dropout regions, if providing a number, will use it as constant value to fill all the regions. if providing a tuple for the min and max, will randomly select value for every pixel / voxel from the range [min, max). if None, will compute the min and max value of input image then randomly select value to fill, default to None.

  • max_holes (Optional[int]) – if not None, define the maximum number to randomly select the expected number of regions.

  • max_spatial_size (Union[Sequence[int], int, None]) – if not None, define the maximum spatial size to randomly select size for every region. if some components of the max_spatial_size are non-positive values, the transform will use the corresponding components of input img size. For example, max_spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • prob (float) – probability of applying the transform.

RandCoarseShuffle

example of RandCoarseShuffle
class monai.transforms.RandCoarseShuffle(holes, spatial_size, max_holes=None, max_spatial_size=None, prob=0.1)[source]

Randomly select regions in the image, then shuffle the pixels within every region. It shuffles every channel separately. Refer to paper: Kang, Guoliang, et al. “Patchshuffle regularization.” arXiv preprint arXiv:1707.07103 (2017). https://arxiv.org/abs/1707.07103

Parameters
  • holes (int) – number of regions to dropout, if max_holes is not None, use this arg as the minimum number to randomly select the expected number of regions.

  • spatial_size (Union[Sequence[int], int]) – spatial size of the regions to dropout, if max_spatial_size is not None, use this arg as the minimum spatial size to randomly select size for every region. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of input img size. For example, spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • max_holes (Optional[int]) – if not None, define the maximum number to randomly select the expected number of regions.

  • max_spatial_size (Union[Sequence[int], int, None]) – if not None, define the maximum spatial size to randomly select size for every region. if some components of the max_spatial_size are non-positive values, the transform will use the corresponding components of input img size. For example, max_spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • prob (float) – probability of applying the transform.

HistogramNormalize

example of HistogramNormalize
class monai.transforms.HistogramNormalize(num_bins=256, min=0, max=255, mask=None, dtype=<class 'numpy.float32'>)[source]

Apply the histogram normalization to input image. Refer to: https://github.com/facebookresearch/CovidPrognosis/blob/master/covidprognosis/data/transforms.py#L83.

Parameters
  • num_bins (int) – number of the bins to use in histogram, default to 256. for more details: https://numpy.org/doc/stable/reference/generated/numpy.histogram.html.

  • min (int) – the min value to normalize input image, default to 0.

  • max (int) – the max value to normalize input image, default to 255.

  • mask (Union[ndarray, Tensor, None]) – if provided, must be ndarray of bools or 0s and 1s, and same shape as image. only points at which mask==True are used for the equalization. can also provide the mask along with img at runtime.

  • dtype (Union[dtype, type, None]) – data type of the output, if None, same as input image. default to float32.

__call__(img, mask=None)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Union[ndarray, Tensor]

IO

LoadImage

class monai.transforms.LoadImage(reader=None, image_only=False, dtype=<class 'numpy.float32'>, *args, **kwargs)[source]

Load image file or files from provided path based on reader. If reader is not specified, this class automatically chooses readers based on the supported suffixes and in the following order:

  • User-specified reader at runtime when calling this loader.

  • User-specified reader in the constructor of LoadImage.

  • Readers from the last to the first in the registered list.

  • Current default readers: (nii, nii.gz -> NibabelReader), (png, jpg, bmp -> PILReader), (npz, npy -> NumpyReader), (others -> ITKReader).

Parameters
  • reader

    reader to load image file and meta data

    • if reader is None, a default set of SUPPORTED_READERS will be used.

    • if reader is a string, the corresponding item in SUPPORTED_READERS will be used, and a reader instance will be constructed with the *args and **kwargs parameters. the supported reader names are: “nibabelreader”, “pilreader”, “itkreader”, “numpyreader”.

    • if reader is a reader class/instance, it will be registered to this loader accordingly.

  • image_only (bool) – if True return only the image volume, otherwise return image data array and header dict.

  • dtype (Union[dtype, type, None]) – if not None convert the loaded image to this data type.

  • args – additional parameters for reader if providing a reader name.

  • kwargs – additional parameters for reader if providing a reader name.

Note

  • The transform returns an image data array if image_only is True, or a tuple of two elements containing the data array, and the meta data in a dictionary format otherwise.

  • If reader is specified, the loader will attempt to use the specified readers and the default supported readers. This might introduce overheads when handling the exceptions of trying the incompatible loaders. In this case, it is therefore recommended to set the most appropriate reader as the last item of the reader parameter.

__call__(filename, reader=None)[source]

Load image file and meta data from the given filename(s). If reader is not specified, this class automatically chooses readers based on the reversed order of registered readers self.readers.

Parameters
  • filename (Union[Sequence[Union[str, PathLike]], str, PathLike]) – path file or file-like object or a list of files. will save the filename to meta_data with key filename_or_obj. if provided a list of files, use the filename of first file to save, and will stack them together as multi-channels data. if provided directory path instead of file path, will treat it as DICOM images series and read.

  • reader (Optional[ImageReader]) – runtime reader to load image file and meta data.

__init__(reader=None, image_only=False, dtype=<class 'numpy.float32'>, *args, **kwargs)[source]
Parameters
  • reader

    reader to load image file and meta data

    • if reader is None, a default set of SUPPORTED_READERS will be used.

    • if reader is a string, the corresponding item in SUPPORTED_READERS will be used, and a reader instance will be constructed with the *args and **kwargs parameters. the supported reader names are: “nibabelreader”, “pilreader”, “itkreader”, “numpyreader”.

    • if reader is a reader class/instance, it will be registered to this loader accordingly.

  • image_only (bool) – if True return only the image volume, otherwise return image data array and header dict.

  • dtype (Union[dtype, type, None]) – if not None convert the loaded image to this data type.

  • args – additional parameters for reader if providing a reader name.

  • kwargs – additional parameters for reader if providing a reader name.

Note

  • The transform returns an image data array if image_only is True, or a tuple of two elements containing the data array, and the meta data in a dictionary format otherwise.

  • If reader is specified, the loader will attempt to use the specified readers and the default supported readers. This might introduce overheads when handling the exceptions of trying the incompatible loaders. In this case, it is therefore recommended to set the most appropriate reader as the last item of the reader parameter.

register(reader)[source]

Register image reader to load image file and meta data.

Parameters

reader (ImageReader) – reader instance to be registered with this loader.

SaveImage

class monai.transforms.SaveImage(output_dir='./', output_postfix='trans', output_ext='.nii.gz', resample=True, mode='nearest', padding_mode=GridSamplePadMode.BORDER, scale=None, dtype=<class 'numpy.float64'>, output_dtype=<class 'numpy.float32'>, squeeze_end_dims=True, data_root_dir='', separate_folder=True, print_log=True)[source]

Save transformed data into files, support NIfTI and PNG formats. It can work for both numpy array and PyTorch Tensor in both preprocessing transform chain and postprocessing transform chain. The name of saved file will be {input_image_name}_{output_postfix}{output_ext}, where the input image name is extracted from the provided meta data dictionary. If no meta data provided, use index from 0 as the filename prefix. It can also save a list of PyTorch Tensor or numpy array without batch dim.

Note: image should be channel-first shape: [C,H,W,[D]].

Parameters
  • output_dir (Union[str, PathLike]) – output image directory.

  • output_postfix (str) – a string appended to all output file names, default to trans.

  • output_ext (str) – output file extension name, available extensions: .nii.gz, .nii, .png.

  • resample (bool) – whether to resample before saving the data array. if saving PNG format image, based on the spatial_shape from metadata. if saving NIfTI format image, based on the original_affine from metadata.

  • mode (Union[GridSampleMode, InterpolateMode, str]) –

    This option is used when resample = True. Defaults to "nearest".

  • padding_mode (Union[GridSamplePadMode, str]) –

    This option is used when resample = True. Defaults to "border".

  • scale (Optional[int]) – {255, 65535} postprocess data by clipping to [0, 1] and scaling [0, 255] (uint8) or [0, 65535] (uint16). Default is None to disable scaling. it’s used for PNG format only.

  • dtype (Union[dtype, type, None]) – data type during resampling computation. Defaults to np.float64 for best precision. if None, use the data type of input data. To be compatible with other modules, the output data type is always np.float32. it’s used for NIfTI format only.

  • output_dtype (Union[dtype, type, None]) – data type for saving data. Defaults to np.float32. it’s used for NIfTI format only.

  • squeeze_end_dims (bool) – if True, any trailing singleton dimensions will be removed (after the channel has been moved to the end). So if input is (C,H,W,D), this will be altered to (H,W,D,C), and then if C==1, it will be saved as (H,W,D). If D also ==1, it will be saved as (H,W). If false, image will always be saved as (H,W,D,C). it’s used for NIfTI format only.

  • data_root_dir (Union[str, PathLike]) – if not empty, it specifies the beginning parts of the input file’s absolute path. it’s used to compute input_file_rel_path, the relative path to the file from data_root_dir to preserve folder structure when saving in case there are files in different folders with the same file names. for example: input_file_name: /foo/bar/test1/image.nii, output_postfix: seg output_ext: nii.gz output_dir: /output, data_root_dir: /foo/bar, output will be: /output/test1/image/image_seg.nii.gz

  • separate_folder (bool) – whether to save every file in a separate folder, for example: if input filename is image.nii, postfix is seg and folder_path is output, if True, save as: output/image/image_seg.nii, if False, save as output/image_seg.nii. default to True.

  • print_log (bool) – whether to print log about the saved file path, etc. default to True.

__call__(img, meta_data=None)[source]
Parameters
  • img (Union[Tensor, ndarray]) – target data content that save into file.

  • meta_data (Optional[Dict]) – key-value pairs of meta_data corresponding to the data.

NVIDIA Tool Extension (NVTX)

RangePush

class monai.transforms.RangePush(msg)[source]

Pushes a range onto a stack of nested range span. Stores zero-based depth of the range that is started.

Parameters

msg (str) – ASCII message to associate with range

RandRangePush

class monai.transforms.RandRangePush(msg)[source]

Pushes a range onto a stack of nested range span (RandomizableTransform). Stores zero-based depth of the range that is started.

Parameters

msg (str) – ASCII message to associate with range

RangePop

class monai.transforms.RangePop[source]

Pops a range off of a stack of nested range spans. Stores zero-based depth of the range that is ended.

RandRangePop

class monai.transforms.RandRangePop(prob=1.0, do_transform=True)[source]

Pops a range off of a stack of nested range spans (RandomizableTransform). Stores zero-based depth of the range that is ended.

Mark

class monai.transforms.Mark(msg)[source]

Mark an instantaneous event that occurred at some point.

Parameters

msg (str) – ASCII message to associate with the event.

RandMark

class monai.transforms.RandMark(msg)[source]

Mark an instantaneous event that occurred at some point. (RandomizableTransform)

Parameters

msg (str) – ASCII message to associate with the event.

Post-processing

Activations

class monai.transforms.Activations(sigmoid=False, softmax=False, other=None)[source]

Add activation operations to the model output, typically Sigmoid or Softmax.

Parameters
  • sigmoid (bool) – whether to execute sigmoid function on model output before transform. Defaults to False.

  • softmax (bool) – whether to execute softmax function on model output before transform. Defaults to False.

  • other (Optional[Callable]) – callable function to execute other activation layers, for example: other = lambda x: torch.tanh(x). Defaults to None.

Raises

TypeError – When other is not an Optional[Callable].

__call__(img, sigmoid=None, softmax=None, other=None)[source]
Parameters
  • sigmoid (Optional[bool]) – whether to execute sigmoid function on model output before transform. Defaults to self.sigmoid.

  • softmax (Optional[bool]) – whether to execute softmax function on model output before transform. Defaults to self.softmax.

  • other (Optional[Callable]) – callable function to execute other activation layers, for example: other = torch.tanh. Defaults to self.other.

Raises
  • ValueError – When sigmoid=True and softmax=True. Incompatible values.

  • TypeError – When other is not an Optional[Callable].

  • ValueError – When self.other=None and other=None. Incompatible values.

Return type

Union[ndarray, Tensor]

AsDiscrete

example of AsDiscrete
class monai.transforms.AsDiscrete(argmax=False, to_onehot=None, threshold=None, rounding=None, n_classes=None, num_classes=None, logit_thresh=0.5, threshold_values=False)[source]

Execute after model forward to transform model output to discrete values. It can complete below operations:

  • execute argmax for input logits values.

  • threshold input value to 0.0 or 1.0.

  • convert input value to One-Hot format.

  • round the value to the closest integer.

Parameters
  • argmax (bool) – whether to execute argmax function on input data before transform. Defaults to False.

  • to_onehot (Optional[int]) – if not None, convert input data into the one-hot format with specified number of classes. Defaults to None.

  • threshold (Optional[float]) – if not None, threshold the float values to int number 0 or 1 with specified theashold. Defaults to None.

  • rounding (Optional[str]) – if not None, round the data according to the specified option, available options: [“torchrounding”].

Example

>>> transform = AsDiscrete(argmax=True)
>>> print(transform(np.array([[[0.0, 1.0]], [[2.0, 3.0]]])))
# [[[1.0, 1.0]]]
>>> transform = AsDiscrete(threshold=0.6)
>>> print(transform(np.array([[[0.0, 0.5], [0.8, 3.0]]])))
# [[[0.0, 0.0], [1.0, 1.0]]]
>>> transform = AsDiscrete(argmax=True, to_onehot=2, threshold=0.5)
>>> print(transform(np.array([[[0.0, 1.0]], [[2.0, 3.0]]])))
# [[[0.0, 0.0]], [[1.0, 1.0]]]

Deprecated since version 0.6.0: n_classes is deprecated, use to_onehot instead.

Deprecated since version 0.7.0: num_classes is deprecated, use to_onehot instead. logit_thresh is deprecated, use threshold instead. threshold_values is deprecated, use threshold instead.

__call__(img, argmax=None, to_onehot=None, threshold=None, rounding=None, n_classes=None, num_classes=None, logit_thresh=None, threshold_values=None)[source]
Parameters
  • img (Union[ndarray, Tensor]) – the input tensor data to convert, if no channel dimension when converting to One-Hot, will automatically add it.

  • argmax (Optional[bool]) – whether to execute argmax function on input data before transform. Defaults to self.argmax.

  • to_onehot (Optional[int]) – if not None, convert input data into the one-hot format with specified number of classes. Defaults to self.to_onehot.

  • threshold (Optional[float]) – if not None, threshold the float values to int number 0 or 1 with specified threshold value. Defaults to self.threshold.

  • rounding (Optional[str]) – if not None, round the data according to the specified option, available options: [“torchrounding”].

Deprecated since version 0.6.0: n_classes is deprecated, use to_onehot instead.

Deprecated since version 0.7.0: num_classes is deprecated, use to_onehot instead. logit_thresh is deprecated, use threshold instead. threshold_values is deprecated, use threshold instead.

Return type

Union[ndarray, Tensor]

KeepLargestConnectedComponent

example of KeepLargestConnectedComponent
class monai.transforms.KeepLargestConnectedComponent(applied_labels, independent=True, connectivity=None)[source]

Keeps only the largest connected component in the image. This transform can be used as a post-processing step to clean up over-segment areas in model output.

The input is assumed to be a channel-first PyTorch Tensor:
  1. With shape (1, spatial_dim1[, spatial_dim2, …]) and the values correspond to expected labels.

  2. With shape (C, spatial_dim1[, spatial_dim2, …]) and the values should be 0, 1 on each labels.

Note

For single channel data, 0 will be treated as background and the over-segment pixels will be set to 0. For one-hot data, the over-segment pixels will be set to 0 in its channel.

For example: Use KeepLargestConnectedComponent with applied_labels=[1], connectivity=1:

[1, 0, 0]         [0, 0, 0]
[0, 1, 1]    =>   [0, 1 ,1]
[0, 1, 1]         [0, 1, 1]

Use KeepLargestConnectedComponent with applied_labels[1, 2], independent=False, connectivity=1:

[0, 0, 1, 0 ,0]           [0, 0, 1, 0 ,0]
[0, 2, 1, 1 ,1]           [0, 2, 1, 1 ,1]
[1, 2, 1, 0 ,0]    =>     [1, 2, 1, 0 ,0]
[1, 2, 0, 1 ,0]           [1, 2, 0, 0 ,0]
[2, 2, 0, 0 ,2]           [2, 2, 0, 0 ,0]

Use KeepLargestConnectedComponent with applied_labels[1, 2], independent=True, connectivity=1:

[0, 0, 1, 0 ,0]           [0, 0, 1, 0 ,0]
[0, 2, 1, 1 ,1]           [0, 2, 1, 1 ,1]
[1, 2, 1, 0 ,0]    =>     [0, 2, 1, 0 ,0]
[1, 2, 0, 1 ,0]           [0, 2, 0, 0 ,0]
[2, 2, 0, 0 ,2]           [2, 2, 0, 0 ,0]

Use KeepLargestConnectedComponent with applied_labels[1, 2], independent=False, connectivity=2:

[0, 0, 1, 0 ,0]           [0, 0, 1, 0 ,0]
[0, 2, 1, 1 ,1]           [0, 2, 1, 1 ,1]
[1, 2, 1, 0 ,0]    =>     [1, 2, 1, 0 ,0]
[1, 2, 0, 1 ,0]           [1, 2, 0, 1 ,0]
[2, 2, 0, 0 ,2]           [2, 2, 0, 0 ,2]
Parameters
  • applied_labels (Union[Sequence[int], int]) – Labels for applying the connected component analysis on. If only one channel. The pixel whose value is in this list will be analyzed. If the data is in one-hot format, this is used to determine which channels to apply.

  • independent (bool) – whether to treat applied_labels as a union of foreground labels. If True, the connected component analysis will be performed on each foreground label independently and return the intersection of the largest components. If False, the analysis will be performed on the union of foreground labels. default is True.

  • connectivity (Optional[int]) – Maximum number of orthogonal hops to consider a pixel/voxel as a neighbor. Accepted values are ranging from 1 to input.ndim. If None, a full connectivity of input.ndim is used.

__call__(img)[source]
Parameters

img (Union[ndarray, Tensor]) – shape must be (C, spatial_dim1[, spatial_dim2, …]).

Return type

Union[ndarray, Tensor]

Returns

An array with shape (C, spatial_dim1[, spatial_dim2, …]).

__init__(applied_labels, independent=True, connectivity=None)[source]
Parameters
  • applied_labels (Union[Sequence[int], int]) – Labels for applying the connected component analysis on. If only one channel. The pixel whose value is in this list will be analyzed. If the data is in one-hot format, this is used to determine which channels to apply.

  • independent (bool) – whether to treat applied_labels as a union of foreground labels. If True, the connected component analysis will be performed on each foreground label independently and return the intersection of the largest components. If False, the analysis will be performed on the union of foreground labels. default is True.

  • connectivity (Optional[int]) – Maximum number of orthogonal hops to consider a pixel/voxel as a neighbor. Accepted values are ranging from 1 to input.ndim. If None, a full connectivity of input.ndim is used.

LabelFilter

example of LabelFilter
class monai.transforms.LabelFilter(applied_labels)[source]

This transform filters out labels and can be used as a processing step to view only certain labels.

The list of applied labels defines which labels will be kept.

Note

All labels which do not match the applied_labels are set to the background label (0).

For example:

Use LabelFilter with applied_labels=[1, 5, 9]:

[1, 2, 3]         [1, 0, 0]
[4, 5, 6]    =>   [0, 5 ,0]
[7, 8, 9]         [0, 0, 9]

Initialize the LabelFilter class with the labels to filter on.

Parameters

applied_labels (Union[Iterable[int], int]) – Label(s) to filter on.

__call__(img)[source]

Filter the image on the applied_labels.

Parameters

img (Union[ndarray, Tensor]) – Pytorch tensor or numpy array of any shape.

Raises

NotImplementedError – The provided image was not a Pytorch Tensor or numpy array.

Return type

Union[ndarray, Tensor]

Returns

Pytorch tensor or numpy array of the same shape as the input.

__init__(applied_labels)[source]

Initialize the LabelFilter class with the labels to filter on.

Parameters

applied_labels (Union[Iterable[int], int]) – Label(s) to filter on.

FillHoles

class monai.transforms.FillHoles(applied_labels=None, connectivity=None)[source]

This transform fills holes in the image and can be used to remove artifacts inside segments.

An enclosed hole is defined as a background pixel/voxel which is only enclosed by a single class. The definition of enclosed can be defined with the connectivity parameter:

1-connectivity     2-connectivity     diagonal connection close-up

     [ ]           [ ]  [ ]  [ ]             [ ]
      |               \  |  /                 |  <- hop 2
[ ]--[x]--[ ]      [ ]--[x]--[ ]        [x]--[ ]
      |               /  |  \             hop 1
     [ ]           [ ]  [ ]  [ ]

It is possible to define for which labels the hole filling should be applied. The input image is assumed to be a PyTorch Tensor or numpy array with shape [C, spatial_dim1[, spatial_dim2, …]]. If C = 1, then the values correspond to expected labels. If C > 1, then a one-hot-encoding is expected where the index of C matches the label indexing.

Note

The label 0 will be treated as background and the enclosed holes will be set to the neighboring class label.

The performance of this method heavily depends on the number of labels. It is a bit faster if the list of applied_labels is provided. Limiting the number of applied_labels results in a big decrease in processing time.

For example:

Use FillHoles with default parameters:

[1, 1, 1, 2, 2, 2, 3, 3]         [1, 1, 1, 2, 2, 2, 3, 3]
[1, 0, 1, 2, 0, 0, 3, 0]    =>   [1, 1 ,1, 2, 0, 0, 3, 0]
[1, 1, 1, 2, 2, 2, 3, 3]         [1, 1, 1, 2, 2, 2, 3, 3]

The hole in label 1 is fully enclosed and therefore filled with label 1. The background label near label 2 and 3 is not fully enclosed and therefore not filled.

Initialize the connectivity and limit the labels for which holes are filled.

Parameters
  • applied_labels (Union[Iterable[int], int, None]) – Labels for which to fill holes. Defaults to None, that is filling holes for all labels.

  • connectivity (Optional[int]) – Maximum number of orthogonal hops to consider a pixel/voxel as a neighbor. Accepted values are ranging from 1 to input.ndim. Defaults to a full connectivity of input.ndim.

__call__(img)[source]

Fill the holes in the provided image.

Note

The value 0 is assumed as background label.

Parameters

img (Union[ndarray, Tensor]) – Pytorch Tensor or numpy array of shape [C, spatial_dim1[, spatial_dim2, …]].

Raises

NotImplementedError – The provided image was not a Pytorch Tensor or numpy array.

Return type

Union[ndarray, Tensor]

Returns

Pytorch Tensor or numpy array of shape [C, spatial_dim1[, spatial_dim2, …]].

__init__(applied_labels=None, connectivity=None)[source]

Initialize the connectivity and limit the labels for which holes are filled.

Parameters
  • applied_labels (Union[Iterable[int], int, None]) – Labels for which to fill holes. Defaults to None, that is filling holes for all labels.

  • connectivity (Optional[int]) – Maximum number of orthogonal hops to consider a pixel/voxel as a neighbor. Accepted values are ranging from 1 to input.ndim. Defaults to a full connectivity of input.ndim.

LabelToContour

example of LabelToContour
class monai.transforms.LabelToContour(kernel_type='Laplace')[source]

Return the contour of binary input images that only compose of 0 and 1, with Laplacian kernel set as default for edge detection. Typical usage is to plot the edge of label or segmentation output.

Parameters

kernel_type (str) – the method applied to do edge detection, default is “Laplace”.

Raises

NotImplementedError – When kernel_type is not “Laplace”.

__call__(img)[source]
Parameters

img (Union[ndarray, Tensor]) – torch tensor data to extract the contour, with shape: [channels, height, width[, depth]]

Raises

ValueError – When image ndim is not one of [3, 4].

Returns

  1. it’s the binary classification result of whether a pixel is edge or not.

  2. in order to keep the original shape of mask image, we use padding as default.

  3. the edge detection is just approximate because it defects inherent to Laplace kernel, ideally the edge should be thin enough, but now it has a thickness.

Return type

A torch tensor with the same shape as img, note

MeanEnsemble

class monai.transforms.MeanEnsemble(weights=None)[source]

Execute mean ensemble on the input data. The input data can be a list or tuple of PyTorch Tensor with shape: [C[, H, W, D]], Or a single PyTorch Tensor with shape: [E, C[, H, W, D]], the E dimension represents the output data from different models. Typically, the input data is model output of segmentation task or classification task. And it also can support to add weights for the input data.

Parameters

weights (Union[Sequence[float], ndarray, Tensor, None]) – can be a list or tuple of numbers for input data with shape: [E, C, H, W[, D]]. or a Numpy ndarray or a PyTorch Tensor data. the weights will be added to input data from highest dimension, for example: 1. if the weights only has 1 dimension, it will be added to the E dimension of input data. 2. if the weights has 2 dimensions, it will be added to E and C dimensions. it’s a typical practice to add weights for different classes: to ensemble 3 segmentation model outputs, every output has 4 channels(classes), so the input data shape can be: [3, 4, H, W, D]. and add different weights for different classes, so the weights shape can be: [3, 4]. for example: weights = [[1, 2, 3, 4], [4, 3, 2, 1], [1, 1, 1, 1]].

__call__(img)[source]

Call self as a function.

Return type

Union[ndarray, Tensor]

Prob NMS

class monai.transforms.ProbNMS(spatial_dims=2, sigma=0.0, prob_threshold=0.5, box_size=48)[source]

Performs probability based non-maximum suppression (NMS) on the probabilities map via iteratively selecting the coordinate with highest probability and then move it as well as its surrounding values. The remove range is determined by the parameter box_size. If multiple coordinates have the same highest probability, only one of them will be selected.

Parameters
  • spatial_dims (int) – number of spatial dimensions of the input probabilities map. Defaults to 2.

  • sigma (Union[Sequence[float], float, Sequence[Tensor], Tensor]) – the standard deviation for gaussian filter. It could be a single value, or spatial_dims number of values. Defaults to 0.0.

  • prob_threshold (float) – the probability threshold, the function will stop searching if the highest probability is no larger than the threshold. The value should be no less than 0.0. Defaults to 0.5.

  • box_size (Union[int, Sequence[int]]) – the box size (in pixel) to be removed around the the pixel with the maximum probability. It can be an integer that defines the size of a square or cube, or a list containing different values for each dimensions. Defaults to 48.

Returns

a list of selected lists, where inner lists contain probability and coordinates. For example, for 3D input, the inner lists are in the form of [probability, x, y, z].

Raises
  • ValueError – When prob_threshold is less than 0.0.

  • ValueError – When box_size is a list or tuple, and its length is not equal to spatial_dims.

  • ValueError – When box_size has a less than 1 value.

VoteEnsemble

class monai.transforms.VoteEnsemble(num_classes=None)[source]

Execute vote ensemble on the input data. The input data can be a list or tuple of PyTorch Tensor with shape: [C[, H, W, D]], Or a single PyTorch Tensor with shape: [E[, C, H, W, D]], the E dimension represents the output data from different models. Typically, the input data is model output of segmentation task or classification task.

Note

This vote transform expects the input data is discrete values. It can be multiple channels data in One-Hot format or single channel data. It will vote to select the most common data between items. The output data has the same shape as every item of the input data.

Parameters

num_classes (Optional[int]) – if the input is single channel data instead of One-Hot, we can’t get class number from channel, need to explicitly specify the number of classes to vote.

__call__(img)[source]

Call self as a function.

Return type

Union[ndarray, Tensor]

Spatial

Spacing

example of Spacing
class monai.transforms.Spacing(pixdim, diagonal=False, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.BORDER, align_corners=False, dtype=<class 'numpy.float64'>, image_only=False)[source]

Resample input image into the specified pixdim.

Parameters
  • pixdim (Union[Sequence[float], float]) – output voxel spacing. if providing a single number, will use it for the first dimension. items of the pixdim sequence map to the spatial dimensions of input image, if length of pixdim sequence is longer than image spatial dimensions, will ignore the longer part, if shorter, will pad with 1.0. if the components of the pixdim are non-positive values, the transform will use the corresponding components of the original pixdim, which is computed from the affine matrix of input image.

  • diagonal (bool) –

    whether to resample the input to have a diagonal affine matrix. If True, the input data is resampled to the following affine:

    np.diag((pixdim_0, pixdim_1, ..., pixdim_n, 1))
    

    This effectively resets the volume to the world coordinate system (RAS+ in nibabel). The original orientation, rotation, shearing are not preserved.

    If False, this transform preserves the axes orientation, orthogonal rotation and translation components from the original affine. This option will not flip/swap axes of the original data.

  • mode (Union[GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "border". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • align_corners (bool) – Geometrically, we consider the pixels of the input as squares rather than points. See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • dtype (Union[dtype, type, None]) – data type for resampling computation. Defaults to np.float64 for best precision. If None, use the data type of input data. To be compatible with other modules, the output data type is always np.float32.

  • image_only (bool) – return just the image or the image, the old affine and new affine. Default is False.

__call__(data_array, affine=None, mode=None, padding_mode=None, align_corners=None, dtype=None, output_spatial_shape=None)[source]
Parameters
  • data_array (Union[ndarray, Tensor]) – in shape (num_channels, H[, W, …]).

  • affine (matrix) – (N+1)x(N+1) original affine matrix for spatially ND data_array. Defaults to identity.

  • mode (Union[GridSampleMode, str, None]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to self.mode. See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str, None]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to self.padding_mode. See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • align_corners (Optional[bool]) – Geometrically, we consider the pixels of the input as squares rather than points. See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • dtype (Union[dtype, type, None]) – data type for resampling computation. Defaults to self.dtype. If None, use the data type of input data. To be compatible with other modules, the output data type is always np.float32.

  • output_spatial_shape (Optional[ndarray]) – specify the shape of the output data_array. This is typically useful for the inverse of Spacingd where sometimes we could not compute the exact shape due to the quantization error with the affine.

Raises
  • ValueError – When data_array has no spatial dimensions.

  • ValueError – When pixdim is nonpositive.

Return type

Union[ndarray, Tensor, Tuple[Union[ndarray, Tensor], Union[ndarray, Tensor], Union[ndarray, Tensor]]]

Returns

data_array (resampled into self.pixdim), original affine, current affine.

__init__(pixdim, diagonal=False, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.BORDER, align_corners=False, dtype=<class 'numpy.float64'>, image_only=False)[source]
Parameters
  • pixdim (Union[Sequence[float], float]) – output voxel spacing. if providing a single number, will use it for the first dimension. items of the pixdim sequence map to the spatial dimensions of input image, if length of pixdim sequence is longer than image spatial dimensions, will ignore the longer part, if shorter, will pad with 1.0. if the components of the pixdim are non-positive values, the transform will use the corresponding components of the original pixdim, which is computed from the affine matrix of input image.

  • diagonal (bool) –

    whether to resample the input to have a diagonal affine matrix. If True, the input data is resampled to the following affine:

    np.diag((pixdim_0, pixdim_1, ..., pixdim_n, 1))
    

    This effectively resets the volume to the world coordinate system (RAS+ in nibabel). The original orientation, rotation, shearing are not preserved.

    If False, this transform preserves the axes orientation, orthogonal rotation and translation components from the original affine. This option will not flip/swap axes of the original data.

  • mode (Union[GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "border". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • align_corners (bool) – Geometrically, we consider the pixels of the input as squares rather than points. See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • dtype (Union[dtype, type, None]) – data type for resampling computation. Defaults to np.float64 for best precision. If None, use the data type of input data. To be compatible with other modules, the output data type is always np.float32.

  • image_only (bool) – return just the image or the image, the old affine and new affine. Default is False.

Orientation

example of Orientation
class monai.transforms.Orientation(axcodes=None, as_closest_canonical=False, labels=(('L', 'R'), ('P', 'A'), ('I', 'S')), image_only=False)[source]

Change the input image’s orientation into the specified based on axcodes.

Parameters
  • axcodes (Optional[str]) – N elements sequence for spatial ND input’s orientation. e.g. axcodes=’RAS’ represents 3D orientation: (Left, Right), (Posterior, Anterior), (Inferior, Superior). default orientation labels options are: ‘L’ and ‘R’ for the first dimension, ‘P’ and ‘A’ for the second, ‘I’ and ‘S’ for the third.

  • as_closest_canonical (bool) – if True, load the image as closest to canonical axis format.

  • labels (Optional[Sequence[Tuple[str, str]]]) – optional, None or sequence of (2,) sequences (2,) sequences are labels for (beginning, end) of output axis. Defaults to (('L', 'R'), ('P', 'A'), ('I', 'S')).

  • image_only (bool) – if True return only the image volume, otherwise return (image, affine, new_affine).

Raises

ValueError – When axcodes=None and as_closest_canonical=True. Incompatible values.

See Also: nibabel.orientations.ornt2axcodes.

__call__(data_array, affine=None)[source]

original orientation of data_array is defined by affine.

Parameters
  • data_array (Union[ndarray, Tensor]) – in shape (num_channels, H[, W, …]).

  • affine (matrix) – (N+1)x(N+1) original affine matrix for spatially ND data_array. Defaults to identity.

Raises
  • ValueError – When data_array has no spatial dimensions.

  • ValueError – When axcodes spatiality differs from data_array.

Return type

Union[ndarray, Tensor, Tuple[Union[ndarray, Tensor], Union[ndarray, Tensor], Union[ndarray, Tensor]]]

Returns

data_array [reoriented in self.axcodes] if self.image_only, else (data_array [reoriented in self.axcodes], original axcodes, current axcodes).

__init__(axcodes=None, as_closest_canonical=False, labels=(('L', 'R'), ('P', 'A'), ('I', 'S')), image_only=False)[source]
Parameters
  • axcodes (Optional[str]) – N elements sequence for spatial ND input’s orientation. e.g. axcodes=’RAS’ represents 3D orientation: (Left, Right), (Posterior, Anterior), (Inferior, Superior). default orientation labels options are: ‘L’ and ‘R’ for the first dimension, ‘P’ and ‘A’ for the second, ‘I’ and ‘S’ for the third.

  • as_closest_canonical (bool) – if True, load the image as closest to canonical axis format.

  • labels (Optional[Sequence[Tuple[str, str]]]) – optional, None or sequence of (2,) sequences (2,) sequences are labels for (beginning, end) of output axis. Defaults to (('L', 'R'), ('P', 'A'), ('I', 'S')).

  • image_only (bool) – if True return only the image volume, otherwise return (image, affine, new_affine).

Raises

ValueError – When axcodes=None and as_closest_canonical=True. Incompatible values.

See Also: nibabel.orientations.ornt2axcodes.

RandRotate

example of RandRotate
class monai.transforms.RandRotate(range_x=0.0, range_y=0.0, range_z=0.0, prob=0.1, keep_size=True, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.BORDER, align_corners=False, dtype=<class 'numpy.float64'>)[source]

Randomly rotate the input arrays.

Parameters
  • range_x (Union[Tuple[float, float], float]) – Range of rotation angle in radians in the plane defined by the first and second axes. If single number, angle is uniformly sampled from (-range_x, range_x).

  • range_y (Union[Tuple[float, float], float]) – Range of rotation angle in radians in the plane defined by the first and third axes. If single number, angle is uniformly sampled from (-range_y, range_y).

  • range_z (Union[Tuple[float, float], float]) – Range of rotation angle in radians in the plane defined by the second and third axes. If single number, angle is uniformly sampled from (-range_z, range_z).

  • prob (float) – Probability of rotation.

  • keep_size (bool) – If it is False, the output shape is adapted so that the input array is contained completely in the output. If it is True, the output shape is the same as the input. Default is True.

  • mode (Union[GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "border". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • align_corners (bool) – Defaults to False. See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • dtype (Union[dtype, type, None, dtype]) – data type for resampling computation. Defaults to np.float64 for best precision. If None, use the data type of input data. To be compatible with other modules, the output data type is always np.float32.

__call__(img, mode=None, padding_mode=None, align_corners=None, dtype=None, randomize=True, get_matrix=False)[source]
Parameters
  • img (Union[ndarray, Tensor]) – channel first array, must have shape 2D: (nchannels, H, W), or 3D: (nchannels, H, W, D).

  • mode (Union[GridSampleMode, str, None]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to self.mode. See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str, None]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to self.padding_mode. See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • align_corners (Optional[bool]) – Defaults to self.align_corners. See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • dtype (Union[dtype, type, None, dtype]) – data type for resampling computation. Defaults to self.dtype. If None, use the data type of input data. To be compatible with other modules, the output data type is always np.float32.

  • randomize (bool) – whether to execute randomize() function first, default to True.

  • get_matrix (bool) – whether to return the rotated image and rotate matrix together, default to False.

randomize(data=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

RandFlip

example of RandFlip
class monai.transforms.RandFlip(prob=0.1, spatial_axis=None)[source]

Randomly flips the image along axes. Preserves shape. See numpy.flip for additional details. https://docs.scipy.org/doc/numpy/reference/generated/numpy.flip.html

Parameters
  • prob (float) – Probability of flipping.

  • spatial_axis (Union[Sequence[int], int, None]) – Spatial axes along which to flip over. Default is None.

__call__(img, randomize=True)[source]
Parameters
  • img (Union[ndarray, Tensor]) – channel first array, must have shape: (num_channels, H[, W, …, ]),

  • randomize (bool) – whether to execute randomize() function first, default to True.

Return type

Union[ndarray, Tensor]

RandAxisFlip

example of RandAxisFlip
class monai.transforms.RandAxisFlip(prob=0.1)[source]

Randomly select a spatial axis and flip along it. See numpy.flip for additional details. https://docs.scipy.org/doc/numpy/reference/generated/numpy.flip.html

Parameters

prob (float) – Probability of flipping.

__call__(img, randomize=True)[source]
Parameters
  • img (Union[ndarray, Tensor]) – channel first array, must have shape: (num_channels, H[, W, …, ]),

  • randomize (bool) – whether to execute randomize() function first, default to True.

Return type

Union[ndarray, Tensor]

randomize(data)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

RandZoom

example of RandZoom
class monai.transforms.RandZoom(prob=0.1, min_zoom=0.9, max_zoom=1.1, mode=InterpolateMode.AREA, padding_mode=NumpyPadMode.EDGE, align_corners=None, keep_size=True, **kwargs)[source]

Randomly zooms input arrays with given probability within given zoom range.

Parameters
  • prob (float) – Probability of zooming.

  • min_zoom (Union[Sequence[float], float]) – Min zoom factor. Can be float or sequence same size as image. If a float, select a random factor from [min_zoom, max_zoom] then apply to all spatial dims to keep the original spatial shape ratio. If a sequence, min_zoom should contain one value for each spatial axis. If 2 values provided for 3D data, use the first value for both H & W dims to keep the same zoom ratio.

  • max_zoom (Union[Sequence[float], float]) – Max zoom factor. Can be float or sequence same size as image. If a float, select a random factor from [min_zoom, max_zoom] then apply to all spatial dims to keep the original spatial shape ratio. If a sequence, max_zoom should contain one value for each spatial axis. If 2 values provided for 3D data, use the first value for both H & W dims to keep the same zoom ratio.

  • mode (Union[InterpolateMode, str]) – {"nearest", "linear", "bilinear", "bicubic", "trilinear", "area"} The interpolation mode. Defaults to "area". See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate

  • padding_mode (Union[NumpyPadMode, PytorchPadMode, str]) – available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate", "circular"}. One of the listed string values or a user supplied function. Defaults to "constant". The mode to pad data after zooming. See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html

  • align_corners (Optional[bool]) – This only has an effect when mode is ‘linear’, ‘bilinear’, ‘bicubic’ or ‘trilinear’. Default: None. See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate

  • keep_size (bool) – Should keep original size (pad if needed), default is True.

  • kwargs – other arguments for the np.pad or torch.pad function. note that np.pad treats channel dimension as the first dimension.

__call__(img, mode=None, padding_mode=None, align_corners=None, randomize=True)[source]
Parameters
Return type

Union[ndarray, Tensor]

randomize(img)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

Affine

example of Affine
class monai.transforms.Affine(rotate_params=None, shear_params=None, translate_params=None, scale_params=None, affine=None, spatial_size=None, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.REFLECTION, as_tensor_output=True, device=None, image_only=False)[source]

Transform img given the affine parameters. A tutorial is available: https://github.com/Project-MONAI/tutorials/blob/0.6.0/modules/transforms_demo_2d.ipynb.

The affine transformations are applied in rotate, shear, translate, scale order.

Parameters
  • rotate_params (Union[Sequence[float], float, None]) – a rotation angle in radians, a scalar for 2D image, a tuple of 3 floats for 3D. Defaults to no rotation.

  • shear_params (Union[Sequence[float], float, None]) –

    shearing factors for affine matrix, take a 3D affine as example:

    [
        [1.0, params[0], params[1], 0.0],
        [params[2], 1.0, params[3], 0.0],
        [params[4], params[5], 1.0, 0.0],
        [0.0, 0.0, 0.0, 1.0],
    ]
    
    a tuple of 2 floats for 2D, a tuple of 6 floats for 3D. Defaults to no shearing.
    

  • translate_params (Union[Sequence[float], float, None]) – a tuple of 2 floats for 2D, a tuple of 3 floats for 3D. Translation is in pixel/voxel relative to the center of the input image. Defaults to no translation.

  • scale_params (Union[Sequence[float], float, None]) – scale factor for every spatial dims. a tuple of 2 floats for 2D, a tuple of 3 floats for 3D. Defaults to 1.0.

  • affine (Union[ndarray, Tensor, None]) – If applied, ignore the params (rotate_params, etc.) and use the supplied matrix. Should be square with each side = num of image spatial dimensions + 1.

  • spatial_size (Union[Sequence[int], int, None]) – output image spatial size. if spatial_size and self.spatial_size are not defined, or smaller than 1, the transform will use the spatial size of img. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of img size. For example, spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • mode (Union[GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "reflection". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • device (Optional[device]) – device on which the tensor will be allocated.

  • image_only (bool) – if True return only the image volume, otherwise return (image, affine).

Deprecated since version 0.6.0: as_tensor_output is deprecated.

__call__(img, spatial_size=None, mode=None, padding_mode=None)[source]
Parameters
  • img (Union[ndarray, Tensor]) – shape must be (num_channels, H, W[, D]),

  • spatial_size (Union[Sequence[int], int, None]) – output image spatial size. if spatial_size and self.spatial_size are not defined, or smaller than 1, the transform will use the spatial size of img. if img has two spatial dimensions, spatial_size should have 2 elements [h, w]. if img has three spatial dimensions, spatial_size should have 3 elements [h, w, d].

  • mode (Union[GridSampleMode, str, None]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to self.mode. See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str, None]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to self.padding_mode. See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

Return type

Union[ndarray, Tensor, Tuple[Union[ndarray, Tensor], Union[ndarray, Tensor]]]

__init__(rotate_params=None, shear_params=None, translate_params=None, scale_params=None, affine=None, spatial_size=None, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.REFLECTION, as_tensor_output=True, device=None, image_only=False)[source]

The affine transformations are applied in rotate, shear, translate, scale order.

Parameters
  • rotate_params (Union[Sequence[float], float, None]) – a rotation angle in radians, a scalar for 2D image, a tuple of 3 floats for 3D. Defaults to no rotation.

  • shear_params (Union[Sequence[float], float, None]) –

    shearing factors for affine matrix, take a 3D affine as example:

    [
        [1.0, params[0], params[1], 0.0],
        [params[2], 1.0, params[3], 0.0],
        [params[4], params[5], 1.0, 0.0],
        [0.0, 0.0, 0.0, 1.0],
    ]
    
    a tuple of 2 floats for 2D, a tuple of 6 floats for 3D. Defaults to no shearing.
    

  • translate_params (Union[Sequence[float], float, None]) – a tuple of 2 floats for 2D, a tuple of 3 floats for 3D. Translation is in pixel/voxel relative to the center of the input image. Defaults to no translation.

  • scale_params (Union[Sequence[float], float, None]) – scale factor for every spatial dims. a tuple of 2 floats for 2D, a tuple of 3 floats for 3D. Defaults to 1.0.

  • affine (Union[ndarray, Tensor, None]) – If applied, ignore the params (rotate_params, etc.) and use the supplied matrix. Should be square with each side = num of image spatial dimensions + 1.

  • spatial_size (Union[Sequence[int], int, None]) – output image spatial size. if spatial_size and self.spatial_size are not defined, or smaller than 1, the transform will use the spatial size of img. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of img size. For example, spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • mode (Union[GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "reflection". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • device (Optional[device]) – device on which the tensor will be allocated.

  • image_only (bool) – if True return only the image volume, otherwise return (image, affine).

Deprecated since version 0.6.0: as_tensor_output is deprecated.

Resample

class monai.transforms.Resample(mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.BORDER, as_tensor_output=True, device=None)[source]

computes output image using values from img, locations from grid using pytorch. supports spatially 2D or 3D (num_channels, H, W[, D]).

Parameters

Deprecated since version 0.6.0: as_tensor_output is deprecated.

__call__(img, grid=None, mode=None, padding_mode=None)[source]
Parameters
Return type

Union[ndarray, Tensor]

__init__(mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.BORDER, as_tensor_output=True, device=None)[source]

computes output image using values from img, locations from grid using pytorch. supports spatially 2D or 3D (num_channels, H, W[, D]).

Parameters

Deprecated since version 0.6.0: as_tensor_output is deprecated.

RandAffine

example of RandAffine
class monai.transforms.RandAffine(prob=0.1, rotate_range=None, shear_range=None, translate_range=None, scale_range=None, spatial_size=None, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.REFLECTION, cache_grid=False, as_tensor_output=True, device=None)[source]

Random affine transform. A tutorial is available: https://github.com/Project-MONAI/tutorials/blob/0.6.0/modules/transforms_demo_2d.ipynb.

Parameters
  • prob (float) – probability of returning a randomized affine grid. defaults to 0.1, with 10% chance returns a randomized grid.

  • rotate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – angle range in radians. If element i is a pair of (min, max) values, then uniform[-rotate_range[i][0], rotate_range[i][1]) will be used to generate the rotation parameter for the i`th spatial dimension. If not, `uniform[-rotate_range[i], rotate_range[i]) will be used. This can be altered on a per-dimension basis. E.g., ((0,3), 1, …): for dim0, rotation will be in range [0, 3], and for dim1 [-1, 1] will be used. Setting a single value will use [-x, x] for dim0 and nothing for the remaining dimensions.

  • shear_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) –

    shear range with format matching rotate_range, it defines the range to randomly select shearing factors(a tuple of 2 floats for 2D, a tuple of 6 floats for 3D) for affine matrix, take a 3D affine as example:

    [
        [1.0, params[0], params[1], 0.0],
        [params[2], 1.0, params[3], 0.0],
        [params[4], params[5], 1.0, 0.0],
        [0.0, 0.0, 0.0, 1.0],
    ]
    

  • translate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – translate range with format matching rotate_range, it defines the range to randomly select pixel/voxel to translate for every spatial dims.

  • scale_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – scaling range with format matching rotate_range. it defines the range to randomly select the scale factor to translate for every spatial dims. A value of 1.0 is added to the result. This allows 0 to correspond to no change (i.e., a scaling of 1.0).

  • spatial_size (Union[Sequence[int], int, None]) – output image spatial size. if spatial_size and self.spatial_size are not defined, or smaller than 1, the transform will use the spatial size of img. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of img size. For example, spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • mode (Union[GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "reflection". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • cache_grid (bool) – whether to cache the identity sampling grid. If the spatial size is not dynamically defined by input image, enabling this option could accelerate the transform.

  • device (Optional[device]) – device on which the tensor will be allocated.

See also

  • RandAffineGrid for the random affine parameters configurations.

  • Affine for the affine transformation parameters configurations.

Deprecated since version 0.6.0: as_tensor_output is deprecated.

__call__(img, spatial_size=None, mode=None, padding_mode=None, randomize=True)[source]
Parameters
  • img (Union[ndarray, Tensor]) – shape must be (num_channels, H, W[, D]),

  • spatial_size (Union[Sequence[int], int, None]) – output image spatial size. if spatial_size and self.spatial_size are not defined, or smaller than 1, the transform will use the spatial size of img. if img has two spatial dimensions, spatial_size should have 2 elements [h, w]. if img has three spatial dimensions, spatial_size should have 3 elements [h, w, d].

  • mode (Union[GridSampleMode, str, None]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to self.mode. See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str, None]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to self.padding_mode. See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • randomize (bool) – whether to execute randomize() function first, default to True.

Return type

Union[ndarray, Tensor]

__init__(prob=0.1, rotate_range=None, shear_range=None, translate_range=None, scale_range=None, spatial_size=None, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.REFLECTION, cache_grid=False, as_tensor_output=True, device=None)[source]
Parameters
  • prob (float) – probability of returning a randomized affine grid. defaults to 0.1, with 10% chance returns a randomized grid.

  • rotate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – angle range in radians. If element i is a pair of (min, max) values, then uniform[-rotate_range[i][0], rotate_range[i][1]) will be used to generate the rotation parameter for the i`th spatial dimension. If not, `uniform[-rotate_range[i], rotate_range[i]) will be used. This can be altered on a per-dimension basis. E.g., ((0,3), 1, …): for dim0, rotation will be in range [0, 3], and for dim1 [-1, 1] will be used. Setting a single value will use [-x, x] for dim0 and nothing for the remaining dimensions.

  • shear_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) –

    shear range with format matching rotate_range, it defines the range to randomly select shearing factors(a tuple of 2 floats for 2D, a tuple of 6 floats for 3D) for affine matrix, take a 3D affine as example:

    [
        [1.0, params[0], params[1], 0.0],
        [params[2], 1.0, params[3], 0.0],
        [params[4], params[5], 1.0, 0.0],
        [0.0, 0.0, 0.0, 1.0],
    ]
    

  • translate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – translate range with format matching rotate_range, it defines the range to randomly select pixel/voxel to translate for every spatial dims.

  • scale_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – scaling range with format matching rotate_range. it defines the range to randomly select the scale factor to translate for every spatial dims. A value of 1.0 is added to the result. This allows 0 to correspond to no change (i.e., a scaling of 1.0).

  • spatial_size (Union[Sequence[int], int, None]) – output image spatial size. if spatial_size and self.spatial_size are not defined, or smaller than 1, the transform will use the spatial size of img. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of img size. For example, spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • mode (Union[GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "reflection". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • cache_grid (bool) – whether to cache the identity sampling grid. If the spatial size is not dynamically defined by input image, enabling this option could accelerate the transform.

  • device (Optional[device]) – device on which the tensor will be allocated.

See also

  • RandAffineGrid for the random affine parameters configurations.

  • Affine for the affine transformation parameters configurations.

Deprecated since version 0.6.0: as_tensor_output is deprecated.

get_identity_grid(spatial_size)[source]

Return a cached or new identity grid depends on the availability.

Parameters

spatial_size (Sequence[int]) – non-dynamic spatial size

randomize(data=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandAffine

Returns

a Randomizable instance.

RandDeformGrid

class monai.transforms.RandDeformGrid(spacing, magnitude_range, as_tensor_output=True, device=None)[source]

Generate random deformation grid.

Parameters
  • spacing (Union[Sequence[float], float]) – spacing of the grid in 2D or 3D. e.g., spacing=(1, 1) indicates pixel-wise deformation in 2D, spacing=(1, 1, 1) indicates voxel-wise deformation in 3D, spacing=(2, 2) indicates deformation field defined on every other pixel in 2D.

  • magnitude_range (Tuple[float, float]) – the random offsets will be generated from uniform[magnitude[0], magnitude[1]).

  • as_tensor_output (bool) – whether to output tensor instead of numpy array. defaults to True.

  • device (Optional[device]) – device to store the output grid data.

__call__(spatial_size)[source]
Parameters

spatial_size (Sequence[int]) – spatial size of the grid.

__init__(spacing, magnitude_range, as_tensor_output=True, device=None)[source]
Parameters
  • spacing (Union[Sequence[float], float]) – spacing of the grid in 2D or 3D. e.g., spacing=(1, 1) indicates pixel-wise deformation in 2D, spacing=(1, 1, 1) indicates voxel-wise deformation in 3D, spacing=(2, 2) indicates deformation field defined on every other pixel in 2D.

  • magnitude_range (Tuple[float, float]) – the random offsets will be generated from uniform[magnitude[0], magnitude[1]).

  • as_tensor_output (bool) – whether to output tensor instead of numpy array. defaults to True.

  • device (Optional[device]) – device to store the output grid data.

randomize(grid_size)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

None

AffineGrid

class monai.transforms.AffineGrid(rotate_params=None, shear_params=None, translate_params=None, scale_params=None, as_tensor_output=True, device=None, affine=None)[source]

Affine transforms on the coordinates.

Parameters
  • rotate_params (Union[Sequence[float], float, None]) – a rotation angle in radians, a scalar for 2D image, a tuple of 3 floats for 3D. Defaults to no rotation.

  • shear_params (Union[Sequence[float], float, None]) –

    shearing factors for affine matrix, take a 3D affine as example:

    [
        [1.0, params[0], params[1], 0.0],
        [params[2], 1.0, params[3], 0.0],
        [params[4], params[5], 1.0, 0.0],
        [0.0, 0.0, 0.0, 1.0],
    ]
    
    a tuple of 2 floats for 2D, a tuple of 6 floats for 3D. Defaults to no shearing.
    

  • translate_params (Union[Sequence[float], float, None]) – a tuple of 2 floats for 2D, a tuple of 3 floats for 3D. Translation is in pixel/voxel relative to the center of the input image. Defaults to no translation.

  • scale_params (Union[Sequence[float], float, None]) – scale factor for every spatial dims. a tuple of 2 floats for 2D, a tuple of 3 floats for 3D. Defaults to 1.0.

  • affine (Union[ndarray, Tensor, None]) – If applied, ignore the params (rotate_params, etc.) and use the supplied matrix. Should be square with each side = num of image spatial dimensions + 1.

Deprecated since version 0.6.0: as_tensor_output is deprecated.

__call__(spatial_size=None, grid=None)[source]

The grid can be initialized with a spatial_size parameter, or provided directly as grid. Therefore, either spatial_size or grid must be provided. When initialising from spatial_size, the backend “torch” will be used.

Parameters
  • spatial_size (Optional[Sequence[int]]) – output grid size.

  • grid (Union[ndarray, Tensor, None]) – grid to be transformed. Shape must be (3, H, W) for 2D or (4, H, W, D) for 3D.

Raises

ValueError – When grid=None and spatial_size=None. Incompatible values.

Return type

Tuple[Union[ndarray, Tensor], Union[ndarray, Tensor]]

RandAffineGrid

class monai.transforms.RandAffineGrid(rotate_range=None, shear_range=None, translate_range=None, scale_range=None, as_tensor_output=True, device=None)[source]

Generate randomised affine grid.

Parameters
  • rotate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – angle range in radians. If element i is a pair of (min, max) values, then uniform[-rotate_range[i][0], rotate_range[i][1]) will be used to generate the rotation parameter for the i`th spatial dimension. If not, `uniform[-rotate_range[i], rotate_range[i]) will be used. This can be altered on a per-dimension basis. E.g., ((0,3), 1, …): for dim0, rotation will be in range [0, 3], and for dim1 [-1, 1] will be used. Setting a single value will use [-x, x] for dim0 and nothing for the remaining dimensions.

  • shear_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) –

    shear range with format matching rotate_range, it defines the range to randomly select shearing factors(a tuple of 2 floats for 2D, a tuple of 6 floats for 3D) for affine matrix, take a 3D affine as example:

    [
        [1.0, params[0], params[1], 0.0],
        [params[2], 1.0, params[3], 0.0],
        [params[4], params[5], 1.0, 0.0],
        [0.0, 0.0, 0.0, 1.0],
    ]
    

  • translate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – translate range with format matching rotate_range, it defines the range to randomly select voxels to translate for every spatial dims.

  • scale_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – scaling range with format matching rotate_range. it defines the range to randomly select the scale factor to translate for every spatial dims. A value of 1.0 is added to the result. This allows 0 to correspond to no change (i.e., a scaling of 1.0).

  • device (Optional[device]) – device to store the output grid data.

Deprecated since version 0.6.0: as_tensor_output is deprecated.

__call__(spatial_size=None, grid=None)[source]
Parameters
  • spatial_size (Optional[Sequence[int]]) – output grid size.

  • grid (Union[ndarray, Tensor, None]) – grid to be transformed. Shape must be (3, H, W) for 2D or (4, H, W, D) for 3D.

Return type

Union[ndarray, Tensor]

Returns

a 2D (3xHxW) or 3D (4xHxWxD) grid.

__init__(rotate_range=None, shear_range=None, translate_range=None, scale_range=None, as_tensor_output=True, device=None)[source]
Parameters
  • rotate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – angle range in radians. If element i is a pair of (min, max) values, then uniform[-rotate_range[i][0], rotate_range[i][1]) will be used to generate the rotation parameter for the i`th spatial dimension. If not, `uniform[-rotate_range[i], rotate_range[i]) will be used. This can be altered on a per-dimension basis. E.g., ((0,3), 1, …): for dim0, rotation will be in range [0, 3], and for dim1 [-1, 1] will be used. Setting a single value will use [-x, x] for dim0 and nothing for the remaining dimensions.

  • shear_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) –

    shear range with format matching rotate_range, it defines the range to randomly select shearing factors(a tuple of 2 floats for 2D, a tuple of 6 floats for 3D) for affine matrix, take a 3D affine as example:

    [
        [1.0, params[0], params[1], 0.0],
        [params[2], 1.0, params[3], 0.0],
        [params[4], params[5], 1.0, 0.0],
        [0.0, 0.0, 0.0, 1.0],
    ]
    

  • translate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – translate range with format matching rotate_range, it defines the range to randomly select voxels to translate for every spatial dims.

  • scale_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – scaling range with format matching rotate_range. it defines the range to randomly select the scale factor to translate for every spatial dims. A value of 1.0 is added to the result. This allows 0 to correspond to no change (i.e., a scaling of 1.0).

  • device (Optional[device]) – device to store the output grid data.

Deprecated since version 0.6.0: as_tensor_output is deprecated.

get_transformation_matrix()[source]

Get the most recently applied transformation matrix

Return type

Union[ndarray, Tensor, None]

randomize(data=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

None

GridDistortion

class monai.transforms.GridDistortion(num_cells, distort_steps, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.BORDER, device=None)[source]

Grid distortion transform. Refer to: https://github.com/albumentations-team/albumentations/blob/master/albumentations/augmentations/transforms.py

Parameters
  • num_cells (Union[Tuple[int], int]) – number of grid cells on each dimension.

  • distort_steps (Sequence[Sequence[float]]) – This argument is a list of tuples, where each tuple contains the distort steps of the corresponding dimensions (in the order of H, W[, D]). The length of each tuple equals to num_cells + 1. Each value in the tuple represents the distort step of the related cell.

  • mode (Union[GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "border". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • device (Optional[device]) – device on which the tensor will be allocated.

__call__(img, distort_steps=None, mode=None, padding_mode=None)[source]
Parameters
  • img (Union[ndarray, Tensor]) – shape must be (num_channels, H, W[, D]).

  • distort_steps (Optional[Sequence[Sequence]]) – This argument is a list of tuples, where each tuple contains the distort steps of the corresponding dimensions (in the order of H, W[, D]). The length of each tuple equals to num_cells + 1. Each value in the tuple represents the distort step of the related cell.

  • mode (Union[GridSampleMode, str, None]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str, None]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "border". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

Return type

Union[ndarray, Tensor]

__init__(num_cells, distort_steps, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.BORDER, device=None)[source]

Grid distortion transform. Refer to: https://github.com/albumentations-team/albumentations/blob/master/albumentations/augmentations/transforms.py

Parameters
  • num_cells (Union[Tuple[int], int]) – number of grid cells on each dimension.

  • distort_steps (Sequence[Sequence[float]]) – This argument is a list of tuples, where each tuple contains the distort steps of the corresponding dimensions (in the order of H, W[, D]). The length of each tuple equals to num_cells + 1. Each value in the tuple represents the distort step of the related cell.

  • mode (Union[GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "border". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • device (Optional[device]) – device on which the tensor will be allocated.

RandGridDistortion

example of RandGridDistortion
class monai.transforms.RandGridDistortion(num_cells=5, prob=0.1, distort_limit=(- 0.03, 0.03), mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.BORDER, device=None)[source]

Random grid distortion transform. Refer to: https://github.com/albumentations-team/albumentations/blob/master/albumentations/augmentations/transforms.py

Parameters
  • num_cells (Union[Tuple[int], int]) – number of grid cells on each dimension.

  • prob (float) – probability of returning a randomized grid distortion transform. Defaults to 0.1.

  • distort_limit (Union[Tuple[float, float], float]) – range to randomly distort. If single number, distort_limit is picked from (-distort_limit, distort_limit). Defaults to (-0.03, 0.03).

  • mode (Union[GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "border". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • device (Optional[device]) – device on which the tensor will be allocated.

__call__(img, mode=None, padding_mode=None, randomize=True)[source]
Parameters
Return type

Union[ndarray, Tensor]

__init__(num_cells=5, prob=0.1, distort_limit=(- 0.03, 0.03), mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.BORDER, device=None)[source]

Random grid distortion transform. Refer to: https://github.com/albumentations-team/albumentations/blob/master/albumentations/augmentations/transforms.py

Parameters
  • num_cells (Union[Tuple[int], int]) – number of grid cells on each dimension.

  • prob (float) – probability of returning a randomized grid distortion transform. Defaults to 0.1.

  • distort_limit (Union[Tuple[float, float], float]) – range to randomly distort. If single number, distort_limit is picked from (-distort_limit, distort_limit). Defaults to (-0.03, 0.03).

  • mode (Union[GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "border". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • device (Optional[device]) – device on which the tensor will be allocated.

randomize(spatial_shape)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

Rand2DElastic

example of Rand2DElastic
class monai.transforms.Rand2DElastic(spacing, magnitude_range, prob=0.1, rotate_range=None, shear_range=None, translate_range=None, scale_range=None, spatial_size=None, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.REFLECTION, as_tensor_output=False, device=None)[source]

Random elastic deformation and affine in 2D. A tutorial is available: https://github.com/Project-MONAI/tutorials/blob/0.6.0/modules/transforms_demo_2d.ipynb.

Parameters
  • spacing (Union[Tuple[float, float], float]) – distance in between the control points.

  • magnitude_range (Tuple[float, float]) – the random offsets will be generated from uniform[magnitude[0], magnitude[1]).

  • prob (float) – probability of returning a randomized elastic transform. defaults to 0.1, with 10% chance returns a randomized elastic transform, otherwise returns a spatial_size centered area extracted from the input image.

  • rotate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – angle range in radians. If element i is a pair of (min, max) values, then uniform[-rotate_range[i][0], rotate_range[i][1]) will be used to generate the rotation parameter for the i`th spatial dimension. If not, `uniform[-rotate_range[i], rotate_range[i]) will be used. This can be altered on a per-dimension basis. E.g., ((0,3), 1, …): for dim0, rotation will be in range [0, 3], and for dim1 [-1, 1] will be used. Setting a single value will use [-x, x] for dim0 and nothing for the remaining dimensions.

  • shear_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) –

    shear range with format matching rotate_range, it defines the range to randomly select shearing factors(a tuple of 2 floats for 2D) for affine matrix, take a 2D affine as example:

    [
        [1.0, params[0], 0.0],
        [params[1], 1.0, 0.0],
        [0.0, 0.0, 1.0],
    ]
    

  • translate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – translate range with format matching rotate_range, it defines the range to randomly select pixel to translate for every spatial dims.

  • scale_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – scaling range with format matching rotate_range. it defines the range to randomly select the scale factor to translate for every spatial dims. A value of 1.0 is added to the result. This allows 0 to correspond to no change (i.e., a scaling of 1.0).

  • spatial_size (Union[int, Tuple[int, int], None]) – specifying output image spatial size [h, w]. if spatial_size and self.spatial_size are not defined, or smaller than 1, the transform will use the spatial size of img. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of img size. For example, spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • mode (Union[GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "reflection". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • device (Optional[device]) – device on which the tensor will be allocated.

See also

  • RandAffineGrid for the random affine parameters configurations.

  • Affine for the affine transformation parameters configurations.

Deprecated since version 0.6.0: as_tensor_output is deprecated.

__call__(img, spatial_size=None, mode=None, padding_mode=None, randomize=True)[source]
Parameters
  • img (Union[ndarray, Tensor]) – shape must be (num_channels, H, W),

  • spatial_size (Union[int, Tuple[int, int], None]) – specifying output image spatial size [h, w]. if spatial_size and self.spatial_size are not defined, or smaller than 1, the transform will use the spatial size of img.

  • mode (Union[GridSampleMode, str, None]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to self.mode. See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str, None]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to self.padding_mode. See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • randomize (bool) – whether to execute randomize() function first, default to True.

Return type

Union[ndarray, Tensor]

__init__(spacing, magnitude_range, prob=0.1, rotate_range=None, shear_range=None, translate_range=None, scale_range=None, spatial_size=None, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.REFLECTION, as_tensor_output=False, device=None)[source]
Parameters
  • spacing (Union[Tuple[float, float], float]) – distance in between the control points.

  • magnitude_range (Tuple[float, float]) – the random offsets will be generated from uniform[magnitude[0], magnitude[1]).

  • prob (float) – probability of returning a randomized elastic transform. defaults to 0.1, with 10% chance returns a randomized elastic transform, otherwise returns a spatial_size centered area extracted from the input image.

  • rotate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – angle range in radians. If element i is a pair of (min, max) values, then uniform[-rotate_range[i][0], rotate_range[i][1]) will be used to generate the rotation parameter for the i`th spatial dimension. If not, `uniform[-rotate_range[i], rotate_range[i]) will be used. This can be altered on a per-dimension basis. E.g., ((0,3), 1, …): for dim0, rotation will be in range [0, 3], and for dim1 [-1, 1] will be used. Setting a single value will use [-x, x] for dim0 and nothing for the remaining dimensions.

  • shear_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) –

    shear range with format matching rotate_range, it defines the range to randomly select shearing factors(a tuple of 2 floats for 2D) for affine matrix, take a 2D affine as example:

    [
        [1.0, params[0], 0.0],
        [params[1], 1.0, 0.0],
        [0.0, 0.0, 1.0],
    ]
    

  • translate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – translate range with format matching rotate_range, it defines the range to randomly select pixel to translate for every spatial dims.

  • scale_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – scaling range with format matching rotate_range. it defines the range to randomly select the scale factor to translate for every spatial dims. A value of 1.0 is added to the result. This allows 0 to correspond to no change (i.e., a scaling of 1.0).

  • spatial_size (Union[int, Tuple[int, int], None]) – specifying output image spatial size [h, w]. if spatial_size and self.spatial_size are not defined, or smaller than 1, the transform will use the spatial size of img. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of img size. For example, spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • mode (Union[GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "reflection". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • device (Optional[device]) – device on which the tensor will be allocated.

See also

  • RandAffineGrid for the random affine parameters configurations.

  • Affine for the affine transformation parameters configurations.

Deprecated since version 0.6.0: as_tensor_output is deprecated.

randomize(spatial_size)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

Rand2DElastic

Returns

a Randomizable instance.

Rand3DElastic

example of Rand3DElastic
class monai.transforms.Rand3DElastic(sigma_range, magnitude_range, prob=0.1, rotate_range=None, shear_range=None, translate_range=None, scale_range=None, spatial_size=None, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.REFLECTION, as_tensor_output=False, device=None)[source]

Random elastic deformation and affine in 3D. A tutorial is available: https://github.com/Project-MONAI/tutorials/blob/0.6.0/modules/transforms_demo_2d.ipynb.

Parameters
  • sigma_range (Tuple[float, float]) – a Gaussian kernel with standard deviation sampled from uniform[sigma_range[0], sigma_range[1]) will be used to smooth the random offset grid.

  • magnitude_range (Tuple[float, float]) – the random offsets on the grid will be generated from uniform[magnitude[0], magnitude[1]).

  • prob (float) – probability of returning a randomized elastic transform. defaults to 0.1, with 10% chance returns a randomized elastic transform, otherwise returns a spatial_size centered area extracted from the input image.

  • rotate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – angle range in radians. If element i is a pair of (min, max) values, then uniform[-rotate_range[i][0], rotate_range[i][1]) will be used to generate the rotation parameter for the i`th spatial dimension. If not, `uniform[-rotate_range[i], rotate_range[i]) will be used. This can be altered on a per-dimension basis. E.g., ((0,3), 1, …): for dim0, rotation will be in range [0, 3], and for dim1 [-1, 1] will be used. Setting a single value will use [-x, x] for dim0 and nothing for the remaining dimensions.

  • shear_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) –

    shear range with format matching rotate_range, it defines the range to randomly select shearing factors(a tuple of 6 floats for 3D) for affine matrix, take a 3D affine as example:

    [
        [1.0, params[0], params[1], 0.0],
        [params[2], 1.0, params[3], 0.0],
        [params[4], params[5], 1.0, 0.0],
        [0.0, 0.0, 0.0, 1.0],
    ]
    

  • translate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – translate range with format matching rotate_range, it defines the range to randomly select voxel to translate for every spatial dims.

  • scale_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – scaling range with format matching rotate_range. it defines the range to randomly select the scale factor to translate for every spatial dims. A value of 1.0 is added to the result. This allows 0 to correspond to no change (i.e., a scaling of 1.0).

  • spatial_size (Union[Tuple[int, int, int], int, None]) – specifying output image spatial size [h, w, d]. if spatial_size and self.spatial_size are not defined, or smaller than 1, the transform will use the spatial size of img. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of img size. For example, spatial_size=(32, 32, -1) will be adapted to (32, 32, 64) if the third spatial dimension size of img is 64.

  • mode (Union[GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "reflection". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • device (Optional[device]) – device on which the tensor will be allocated.

See also

  • RandAffineGrid for the random affine parameters configurations.

  • Affine for the affine transformation parameters configurations.

Deprecated since version 0.6.0: as_tensor_output is deprecated.

__call__(img, spatial_size=None, mode=None, padding_mode=None, randomize=True)[source]
Parameters
  • img (Union[ndarray, Tensor]) – shape must be (num_channels, H, W, D),

  • spatial_size (Union[Tuple[int, int, int], int, None]) – specifying spatial 3D output image spatial size [h, w, d]. if spatial_size and self.spatial_size are not defined, or smaller than 1, the transform will use the spatial size of img.

  • mode (Union[GridSampleMode, str, None]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to self.mode. See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str, None]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to self.padding_mode. See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • randomize (bool) – whether to execute randomize() function first, default to True.

Return type

Union[ndarray, Tensor]

__init__(sigma_range, magnitude_range, prob=0.1, rotate_range=None, shear_range=None, translate_range=None, scale_range=None, spatial_size=None, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.REFLECTION, as_tensor_output=False, device=None)[source]
Parameters
  • sigma_range (Tuple[float, float]) – a Gaussian kernel with standard deviation sampled from uniform[sigma_range[0], sigma_range[1]) will be used to smooth the random offset grid.

  • magnitude_range (Tuple[float, float]) – the random offsets on the grid will be generated from uniform[magnitude[0], magnitude[1]).

  • prob (float) – probability of returning a randomized elastic transform. defaults to 0.1, with 10% chance returns a randomized elastic transform, otherwise returns a spatial_size centered area extracted from the input image.

  • rotate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – angle range in radians. If element i is a pair of (min, max) values, then uniform[-rotate_range[i][0], rotate_range[i][1]) will be used to generate the rotation parameter for the i`th spatial dimension. If not, `uniform[-rotate_range[i], rotate_range[i]) will be used. This can be altered on a per-dimension basis. E.g., ((0,3), 1, …): for dim0, rotation will be in range [0, 3], and for dim1 [-1, 1] will be used. Setting a single value will use [-x, x] for dim0 and nothing for the remaining dimensions.

  • shear_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) –

    shear range with format matching rotate_range, it defines the range to randomly select shearing factors(a tuple of 6 floats for 3D) for affine matrix, take a 3D affine as example:

    [
        [1.0, params[0], params[1], 0.0],
        [params[2], 1.0, params[3], 0.0],
        [params[4], params[5], 1.0, 0.0],
        [0.0, 0.0, 0.0, 1.0],
    ]
    

  • translate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – translate range with format matching rotate_range, it defines the range to randomly select voxel to translate for every spatial dims.

  • scale_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – scaling range with format matching rotate_range. it defines the range to randomly select the scale factor to translate for every spatial dims. A value of 1.0 is added to the result. This allows 0 to correspond to no change (i.e., a scaling of 1.0).

  • spatial_size (Union[Tuple[int, int, int], int, None]) – specifying output image spatial size [h, w, d]. if spatial_size and self.spatial_size are not defined, or smaller than 1, the transform will use the spatial size of img. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of img size. For example, spatial_size=(32, 32, -1) will be adapted to (32, 32, 64) if the third spatial dimension size of img is 64.

  • mode (Union[GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "reflection". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • device (Optional[device]) – device on which the tensor will be allocated.

See also

  • RandAffineGrid for the random affine parameters configurations.

  • Affine for the affine transformation parameters configurations.

Deprecated since version 0.6.0: as_tensor_output is deprecated.

randomize(grid_size)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

Rand3DElastic

Returns

a Randomizable instance.

Rotate90

example of Rotate90
class monai.transforms.Rotate90(k=1, spatial_axes=(0, 1))[source]

Rotate an array by 90 degrees in the plane specified by axes. See np.rot90 for additional details: https://numpy.org/doc/stable/reference/generated/numpy.rot90.html.

Parameters
  • k (int) – number of times to rotate by 90 degrees.

  • spatial_axes (Tuple[int, int]) – 2 int numbers, defines the plane to rotate with 2 spatial axes. Default: (0, 1), this is the first two axis in spatial dimensions. If axis is negative it counts from the last to the first axis.

__call__(img)[source]
Parameters

img (Union[ndarray, Tensor]) – channel first array, must have shape: (num_channels, H[, W, …, ]),

Return type

Union[ndarray, Tensor]

__init__(k=1, spatial_axes=(0, 1))[source]
Parameters
  • k (int) – number of times to rotate by 90 degrees.

  • spatial_axes (Tuple[int, int]) – 2 int numbers, defines the plane to rotate with 2 spatial axes. Default: (0, 1), this is the first two axis in spatial dimensions. If axis is negative it counts from the last to the first axis.

RandRotate90

example of RandRotate90
class monai.transforms.RandRotate90(prob=0.1, max_k=3, spatial_axes=(0, 1))[source]

With probability prob, input arrays are rotated by 90 degrees in the plane specified by spatial_axes.

Parameters
  • prob (float) – probability of rotating. (Default 0.1, with 10% probability it returns a rotated array)

  • max_k (int) – number of rotations will be sampled from np.random.randint(max_k) + 1, (Default 3).

  • spatial_axes (Tuple[int, int]) – 2 int numbers, defines the plane to rotate with 2 spatial axes. Default: (0, 1), this is the first two axis in spatial dimensions.

__call__(img, randomize=True)[source]
Parameters
  • img (Union[ndarray, Tensor]) – channel first array, must have shape: (num_channels, H[, W, …, ]),

  • randomize (bool) – whether to execute randomize() function first, default to True.

Return type

Union[ndarray, Tensor]

__init__(prob=0.1, max_k=3, spatial_axes=(0, 1))[source]
Parameters
  • prob (float) – probability of rotating. (Default 0.1, with 10% probability it returns a rotated array)

  • max_k (int) – number of rotations will be sampled from np.random.randint(max_k) + 1, (Default 3).

  • spatial_axes (Tuple[int, int]) – 2 int numbers, defines the plane to rotate with 2 spatial axes. Default: (0, 1), this is the first two axis in spatial dimensions.

randomize(data=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

Flip

example of Flip
class monai.transforms.Flip(spatial_axis=None)[source]

Reverses the order of elements along the given spatial axis. Preserves shape. Uses np.flip in practice. See numpy.flip for additional details: https://docs.scipy.org/doc/numpy/reference/generated/numpy.flip.html.

Parameters

spatial_axis (Union[Sequence[int], int, None]) – spatial axes along which to flip over. Default is None. The default axis=None will flip over all of the axes of the input array. If axis is negative it counts from the last to the first axis. If axis is a tuple of ints, flipping is performed on all of the axes specified in the tuple.

__call__(img)[source]
Parameters

img (Union[ndarray, Tensor]) – channel first array, must have shape: (num_channels, H[, W, …, ]),

Return type

Union[ndarray, Tensor]

Resize

example of Resize
class monai.transforms.Resize(spatial_size, size_mode='all', mode=InterpolateMode.AREA, align_corners=None)[source]

Resize the input image to given spatial size (with scaling, not cropping/padding). Implemented using torch.nn.functional.interpolate.

Parameters
  • spatial_size (Union[Sequence[int], int]) – expected shape of spatial dimensions after resize operation. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of img size. For example, spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • size_mode (str) – should be “all” or “longest”, if “all”, will use spatial_size for all the spatial dims, if “longest”, rescale the image so that only the longest side is equal to specified spatial_size, which must be an int number in this case, keeping the aspect ratio of the initial image, refer to: https://albumentations.ai/docs/api_reference/augmentations/geometric/resize/ #albumentations.augmentations.geometric.resize.LongestMaxSize.

  • mode (Union[InterpolateMode, str]) – {"nearest", "linear", "bilinear", "bicubic", "trilinear", "area"} The interpolation mode. Defaults to "area". See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate

  • align_corners (Optional[bool]) – This only has an effect when mode is ‘linear’, ‘bilinear’, ‘bicubic’ or ‘trilinear’. Default: None. See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate

__call__(img, mode=None, align_corners=None)[source]
Parameters
Raises

ValueError – When self.spatial_size length is less than img spatial dimensions.

Return type

Union[ndarray, Tensor]

Rotate

example of Rotate
class monai.transforms.Rotate(angle, keep_size=True, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.BORDER, align_corners=False, dtype=<class 'numpy.float64'>)[source]

Rotates an input image by given angle using monai.networks.layers.AffineTransform.

Parameters
  • angle (Union[Sequence[float], float]) – Rotation angle(s) in radians. should a float for 2D, three floats for 3D.

  • keep_size (bool) – If it is True, the output shape is kept the same as the input. If it is False, the output shape is adapted so that the input array is contained completely in the output. Default is True.

  • mode (Union[GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • padding_mode (Union[GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "border". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • align_corners (bool) – Defaults to False. See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample

  • dtype (Union[dtype, type, None, dtype]) – data type for resampling computation. Defaults to np.float64 for best precision. If None, use the data type of input data. To be compatible with other modules, the output data type is always np.float32.

__call__(img, mode=None, padding_mode=None, align_corners=None, dtype=None)[source]
Parameters
Raises

ValueError – When img spatially is not one of [2D, 3D].

Return type

Union[ndarray, Tensor]

get_rotation_matrix()[source]

Get the most recently applied rotation matrix This is not thread-safe.

Return type

Union[ndarray, Tensor, None]

Zoom

example of Zoom
class monai.transforms.Zoom(zoom, mode=InterpolateMode.AREA, padding_mode=NumpyPadMode.EDGE, align_corners=None, keep_size=True, **kwargs)[source]

Zooms an ND image using torch.nn.functional.interpolate. For details, please see https://pytorch.org/docs/stable/nn.functional.html#interpolate.

Different from monai.transforms.resize, this transform takes scaling factors as input, and provides an option of preserving the input spatial size.

Parameters
  • zoom (Union[Sequence[float], float]) – The zoom factor along the spatial axes. If a float, zoom is the same for each spatial axis. If a sequence, zoom should contain one value for each spatial axis.

  • mode (Union[InterpolateMode, str]) – {"nearest", "linear", "bilinear", "bicubic", "trilinear", "area"} The interpolation mode. Defaults to "area". See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate

  • padding_mode (Union[NumpyPadMode, PytorchPadMode, str]) – available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate", "circular"}. One of the listed string values or a user supplied function. Defaults to "constant". The mode to pad data after zooming. See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html

  • align_corners (Optional[bool]) – This only has an effect when mode is ‘linear’, ‘bilinear’, ‘bicubic’ or ‘trilinear’. Default: None. See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate

  • keep_size (bool) – Should keep original size (padding/slicing if needed), default is True.

  • kwargs – other arguments for the np.pad or torch.pad function. note that np.pad treats channel dimension as the first dimension.

__call__(img, mode=None, padding_mode=None, align_corners=None)[source]
Parameters
Return type

Union[ndarray, Tensor]

AddCoordinateChannels

class monai.transforms.AddCoordinateChannels(spatial_channels)[source]

Appends additional channels encoding coordinates of the input. Useful when e.g. training using patch-based sampling, to allow feeding of the patch’s location into the network.

This can be seen as a input-only version of CoordConv:

Liu, R. et al. An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution, NeurIPS 2018.

Parameters

spatial_channels (Sequence[int]) – the spatial dimensions that are to have their coordinates encoded in a channel and appended to the input. E.g., (1,2,3) will append three channels to the input, encoding the coordinates of the input’s three spatial dimensions (0 is reserved for the channel dimension).

__call__(img)[source]
Parameters

img (Union[ndarray, Tensor]) – data to be transformed, assuming img is channel first.

Return type

Union[ndarray, Tensor]

__init__(spatial_channels)[source]
Parameters

spatial_channels (Sequence[int]) – the spatial dimensions that are to have their coordinates encoded in a channel and appended to the input. E.g., (1,2,3) will append three channels to the input, encoding the coordinates of the input’s three spatial dimensions (0 is reserved for the channel dimension).

Smooth Field

RandSmoothFieldAdjustContrast

class monai.transforms.RandSmoothFieldAdjustContrast(spatial_size, rand_size, padder=None, mode=InterpolateMode.AREA, align_corners=None, prob=0.1, gamma=(0.5, 4.5))[source]

Randomly adjust the contrast of input images by calculating a randomized smooth field for each invocation. This uses SmoothFieldAdjustContrast and SmoothField internally.

Parameters
  • spatial_size (Union[Sequence[int], int]) – size of input array’s spatial dimensions

  • rand_size (Union[Sequence[int], int]) – size of the randomized field to start from

  • padder (Optional[Transform]) – optional transform to add padding to the randomized field

  • mode (Union[InterpolateMode, str]) – interpolation mode to use when upsampling

  • align_corners (Optional[bool]) – if True align the corners when upsampling field

  • prob (float) – probability transform is applied

  • gamma (Union[Sequence[float], float]) – (min, max) range for exponential field

__call__(img, randomize=True)[source]

Apply the transform to img, if randomize randomizing the smooth field otherwise reusing the previous.

randomize(data=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandSmoothFieldAdjustContrast

Returns

a Randomizable instance.

RandSmoothFieldAdjustIntensity

class monai.transforms.RandSmoothFieldAdjustIntensity(spatial_size, rand_size, padder=None, mode=InterpolateMode.AREA, align_corners=None, prob=0.1, gamma=(0.1, 1.0))[source]

Randomly adjust the intensity of input images by calculating a randomized smooth field for each invocation. This uses SmoothField internally.

Parameters
  • spatial_size (Union[Sequence[int], int]) – size of input array

  • rand_size (Union[Sequence[int], int]) – size of the randomized field to start from

  • padder (Optional[Transform]) – optional transform to add padding to the randomized field

  • mode (Union[InterpolateMode, str]) – interpolation mode to use when upsampling

  • align_corners (Optional[bool]) – if True align the corners when upsampling field

  • prob (float) – probability transform is applied

  • gamma (Union[Sequence[float], float]) – (min, max) range of intensity multipliers

__call__(img, randomize=True)[source]

Apply the transform to img, if randomize randomizing the smooth field otherwise reusing the previous.

randomize(data=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandSmoothFieldAdjustIntensity

Returns

a Randomizable instance.

Utility

Identity

class monai.transforms.Identity[source]

Do nothing to the data. As the output value is same as input, it can be used as a testing tool to verify the transform chain, Compose or transform adaptor, etc.

__call__(img)[source]

Apply the transform to img.

Return type

Union[ndarray, Tensor]

AsChannelFirst

class monai.transforms.AsChannelFirst(channel_dim=- 1)[source]

Change the channel dimension of the image to the first dimension.

Most of the image transformations in monai.transforms assume the input image is in the channel-first format, which has the shape (num_channels, spatial_dim_1[, spatial_dim_2, …]).

This transform could be used to convert, for example, a channel-last image array in shape (spatial_dim_1[, spatial_dim_2, …], num_channels) into the channel-first format, so that the multidimensional image array can be correctly interpreted by the other transforms.

Parameters

channel_dim (int) – which dimension of input image is the channel, default is the last dimension.

__call__(img)[source]

Apply the transform to img.

Return type

Union[ndarray, Tensor]

AsChannelLast

class monai.transforms.AsChannelLast(channel_dim=0)[source]

Change the channel dimension of the image to the last dimension.

Some of other 3rd party transforms assume the input image is in the channel-last format with shape (spatial_dim_1[, spatial_dim_2, …], num_channels).

This transform could be used to convert, for example, a channel-first image array in shape (num_channels, spatial_dim_1[, spatial_dim_2, …]) into the channel-last format, so that MONAI transforms can construct a chain with other 3rd party transforms together.

Parameters

channel_dim (int) – which dimension of input image is the channel, default is the first dimension.

__call__(img)[source]

Apply the transform to img.

Return type

Union[ndarray, Tensor]

AddChannel

class monai.transforms.AddChannel[source]

Adds a 1-length channel dimension to the input image.

Most of the image transformations in monai.transforms assumes the input image is in the channel-first format, which has the shape (num_channels, spatial_dim_1[, spatial_dim_2, …]).

This transform could be used, for example, to convert a (spatial_dim_1[, spatial_dim_2, …]) spatial image into the channel-first format so that the multidimensional image array can be correctly interpreted by the other transforms.

__call__(img)[source]

Apply the transform to img.

Return type

Union[ndarray, Tensor]

EnsureChannelFirst

class monai.transforms.EnsureChannelFirst(strict_check=True)[source]

Automatically adjust or add the channel dimension of input data to ensure channel_first shape. It extracts the original_channel_dim info from provided meta_data dictionary. Typical values of original_channel_dim can be: “no_channel”, 0, -1. Convert the data to channel_first based on the original_channel_dim information.

Parameters

strict_check (bool) – whether to raise an error when the meta information is insufficient.

__call__(img, meta_dict=None)[source]

Apply the transform to img.

Return type

Union[ndarray, Tensor]

__init__(strict_check=True)[source]
Parameters

strict_check (bool) – whether to raise an error when the meta information is insufficient.

RepeatChannel

class monai.transforms.RepeatChannel(repeats)[source]

Repeat channel data to construct expected input shape for models. The repeats count includes the origin data, for example: RepeatChannel(repeats=2)([[1, 2], [3, 4]]) generates: [[1, 2], [1, 2], [3, 4], [3, 4]]

Parameters

repeats (int) – the number of repetitions for each element.

__call__(img)[source]

Apply the transform to img, assuming img is a “channel-first” array.

Return type

Union[ndarray, Tensor]

SplitChannel

class monai.transforms.SplitChannel(channel_dim=0)[source]

Split Numpy array or PyTorch Tensor data according to the channel dim. It can help applying different following transforms to different channels.

Parameters

channel_dim (int) – which dimension of input image is the channel, default to 0.

__call__(img)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

List[Union[ndarray, Tensor]]

CastToType

class monai.transforms.CastToType(dtype=<class 'numpy.float32'>)[source]

Cast the Numpy data to specified numpy data type, or cast the PyTorch Tensor to specified PyTorch data type.

Parameters

dtype – convert image to this data type, default is np.float32.

__call__(img, dtype=None)[source]

Apply the transform to img, assuming img is a numpy array or PyTorch Tensor.

Parameters

dtype (Union[dtype, type, None, dtype]) – convert image to this data type, default is self.dtype.

Raises

TypeError – When img type is not in Union[numpy.ndarray, torch.Tensor].

Return type

Union[ndarray, Tensor]

__init__(dtype=<class 'numpy.float32'>)[source]
Parameters

dtype – convert image to this data type, default is np.float32.

ToTensor

class monai.transforms.ToTensor(dtype=None, device=None, wrap_sequence=True)[source]

Converts the input image to a tensor without applying any other transformations. Input data can be PyTorch Tensor, numpy array, list, dictionary, int, float, bool, str, etc. Will convert Tensor, Numpy array, float, int, bool to Tensor, strings and objects keep the original. For dictionary, list or tuple, convert every item to a Tensor if applicable and wrap_sequence=False.

Parameters
  • dtype (Optional[dtype]) – target data type to when converting to Tensor.

  • device (Optional[device]) – target device to put the converted Tensor data.

  • wrap_sequence (bool) – if False, then lists will recursively call this function, default to True. E.g., if False, [1, 2] -> [tensor(1), tensor(2)], if True, then [1, 2] -> tensor([1, 2]).

__call__(img)[source]

Apply the transform to img and make it contiguous.

ToNumpy

class monai.transforms.ToNumpy(dtype=None, wrap_sequence=True)[source]

Converts the input data to numpy array, can support list or tuple of numbers and PyTorch Tensor.

Parameters
  • dtype (Union[dtype, type, None]) – target data type when converting to numpy array.

  • wrap_sequence (bool) – if False, then lists will recursively call this function, default to True. E.g., if False, [1, 2] -> [array(1), array(2)], if True, then [1, 2] -> array([1, 2]).

__call__(img)[source]

Apply the transform to img and make it contiguous.

ToCupy

class monai.transforms.ToCupy(dtype=None, wrap_sequence=True)[source]

Converts the input data to CuPy array, can support list or tuple of numbers, NumPy and PyTorch Tensor.

Parameters
  • dtype – data type specifier. It is inferred from the input by default.

  • wrap_sequence (bool) – if False, then lists will recursively call this function, default to True. E.g., if False, [1, 2] -> [array(1), array(2)], if True, then [1, 2] -> array([1, 2]).

__call__(data)[source]

Create a CuPy array from data and make it contiguous

Transpose

class monai.transforms.Transpose(indices)[source]

Transposes the input image based on the given indices dimension ordering.

__call__(img)[source]

Apply the transform to img.

Return type

Union[ndarray, Tensor]

SqueezeDim

class monai.transforms.SqueezeDim(dim=0)[source]

Squeeze a unitary dimension.

Parameters

dim (Optional[int]) – dimension to be squeezed. Default = 0 “None” works when the input is numpy array.

Raises

TypeError – When dim is not an Optional[int].

__call__(img)[source]
Parameters

img (Union[ndarray, Tensor]) – numpy arrays with required dimension dim removed

Return type

Union[ndarray, Tensor]

__init__(dim=0)[source]
Parameters

dim (Optional[int]) – dimension to be squeezed. Default = 0 “None” works when the input is numpy array.

Raises

TypeError – When dim is not an Optional[int].

DataStats

class monai.transforms.DataStats(prefix='Data', data_type=True, data_shape=True, value_range=True, data_value=False, additional_info=None, logger_handler=None)[source]

Utility transform to show the statistics of data for debug or analysis. It can be inserted into any place of a transform chain and check results of previous transforms. It support both numpy.ndarray and torch.tensor as input data, so it can be used in pre-processing and post-processing.

Parameters
  • prefix (str) – will be printed in format: “{prefix} statistics”.

  • data_type (bool) – whether to show the type of input data.

  • data_shape (bool) – whether to show the shape of input data.

  • value_range (bool) – whether to show the value range of input data.

  • data_value (bool) – whether to show the raw value of input data. a typical example is to print some properties of Nifti image: affine, pixdim, etc.

  • additional_info (Optional[Callable]) – user can define callable function to extract additional info from input data.

  • logger_handler (Optional[Handler]) – add additional handler to output data: save to file, etc. add existing python logging handlers: https://docs.python.org/3/library/logging.handlers.html the handler should have a logging level of at least INFO.

Raises

TypeError – When additional_info is not an Optional[Callable].

__call__(img, prefix=None, data_type=None, data_shape=None, value_range=None, data_value=None, additional_info=None)[source]

Apply the transform to img, optionally take arguments similar to the class constructor.

Return type

Union[ndarray, Tensor]

__init__(prefix='Data', data_type=True, data_shape=True, value_range=True, data_value=False, additional_info=None, logger_handler=None)[source]
Parameters
  • prefix (str) – will be printed in format: “{prefix} statistics”.

  • data_type (bool) – whether to show the type of input data.

  • data_shape (bool) – whether to show the shape of input data.

  • value_range (bool) – whether to show the value range of input data.

  • data_value (bool) – whether to show the raw value of input data. a typical example is to print some properties of Nifti image: affine, pixdim, etc.

  • additional_info (Optional[Callable]) – user can define callable function to extract additional info from input data.

  • logger_handler (Optional[Handler]) – add additional handler to output data: save to file, etc. add existing python logging handlers: https://docs.python.org/3/library/logging.handlers.html the handler should have a logging level of at least INFO.

Raises

TypeError – When additional_info is not an Optional[Callable].

SimulateDelay

class monai.transforms.SimulateDelay(delay_time=0.0)[source]

This is a pass through transform to be used for testing purposes. It allows adding fake behaviors that are useful for testing purposes to simulate how large datasets behave without needing to test on large data sets.

For example, simulating slow NFS data transfers, or slow network transfers in testing by adding explicit timing delays. Testing of small test data can lead to incomplete understanding of real world issues, and may lead to sub-optimal design choices.

Parameters

delay_time (float) – The minimum amount of time, in fractions of seconds, to accomplish this delay task.

__call__(img, delay_time=None)[source]
Parameters
  • img (Union[ndarray, Tensor]) – data remain unchanged throughout this transform.

  • delay_time (Optional[float]) – The minimum amount of time, in fractions of seconds, to accomplish this delay task.

Return type

Union[ndarray, Tensor]

__init__(delay_time=0.0)[source]
Parameters

delay_time (float) – The minimum amount of time, in fractions of seconds, to accomplish this delay task.

Lambda

class monai.transforms.Lambda(func=None)[source]

Apply a user-defined lambda as a transform.

For example:

image = np.ones((10, 2, 2))
lambd = Lambda(func=lambda x: x[:4, :, :])
print(lambd(image).shape)
(4, 2, 2)
Parameters

func (Optional[Callable]) – Lambda/function to be applied.

Raises

TypeError – When func is not an Optional[Callable].

__call__(img, func=None)[source]

Apply self.func to img.

Parameters

func (Optional[Callable]) – Lambda/function to be applied. Defaults to self.func.

Raises
  • TypeError – When func is not an Optional[Callable].

  • ValueError – When func=None and self.func=None. Incompatible values.

RandLambda

class monai.transforms.RandLambda(func=None, prob=1.0)[source]

Randomizable version monai.transforms.Lambda, the input func may contain random logic, or randomly execute the function based on prob.

Parameters
  • func (Optional[Callable]) – Lambda/function to be applied.

  • prob (float) – probability of executing the random function, default to 1.0, with 100% probability to execute.

For more details, please check monai.transforms.Lambda.

__call__(img, func=None)[source]

Apply self.func to img.

Parameters

func (Optional[Callable]) – Lambda/function to be applied. Defaults to self.func.

Raises
  • TypeError – When func is not an Optional[Callable].

  • ValueError – When func=None and self.func=None. Incompatible values.

LabelToMask

class monai.transforms.LabelToMask(select_labels, merge_channels=False)[source]

Convert labels to mask for other tasks. A typical usage is to convert segmentation labels to mask data to pre-process images and then feed the images into classification network. It can support single channel labels or One-Hot labels with specified select_labels. For example, users can select label value = [2, 3] to construct mask data, or select the second and the third channels of labels to construct mask data. The output mask data can be a multiple channels binary data or a single channel binary data that merges all the channels.

Parameters
  • select_labels (Union[Sequence[int], int]) – labels to generate mask from. for 1 channel label, the select_labels is the expected label values, like: [1, 2, 3]. for One-Hot format label, the select_labels is the expected channel indices.

  • merge_channels (bool) – whether to use np.any() to merge the result on channel dim. if yes, will return a single channel mask with binary data.

__call__(img, select_labels=None, merge_channels=False)[source]
Parameters
  • select_labels (Union[Sequence[int], int, None]) – labels to generate mask from. for 1 channel label, the select_labels is the expected label values, like: [1, 2, 3]. for One-Hot format label, the select_labels is the expected channel indices.

  • merge_channels (bool) – whether to use np.any() to merge the result on channel dim. if yes, will return a single channel mask with binary data.

Return type

Union[ndarray, Tensor]

FgBgToIndices

class monai.transforms.FgBgToIndices(image_threshold=0.0, output_shape=None)[source]

Compute foreground and background of the input label data, return the indices. If no output_shape specified, output data will be 1 dim indices after flattening. This transform can help pre-compute foreground and background regions for other transforms. A typical usage is to randomly select foreground and background to crop. The main logic is based on monai.transforms.utils.map_binary_to_indices.

Parameters
  • image_threshold (float) – if enabled image at runtime, use image > image_threshold to determine the valid image content area and select background only in this area.

  • output_shape (Optional[Sequence[int]]) – expected shape of output indices. if not None, unravel indices to specified shape.

__call__(label, image=None, output_shape=None)[source]
Parameters
  • label (Union[ndarray, Tensor]) – input data to compute foreground and background indices.

  • image (Union[ndarray, Tensor, None]) – if image is not None, use label = 0 & image > image_threshold to define background. so the output items will not map to all the voxels in the label.

  • output_shape (Optional[Sequence[int]]) – expected shape of output indices. if None, use self.output_shape instead.

Return type

Tuple[Union[ndarray, Tensor], Union[ndarray, Tensor]]

ClassesToIndices

class monai.transforms.ClassesToIndices(num_classes=None, image_threshold=0.0, output_shape=None)[source]

Compute indices of every class of the input label data, return a list of indices. If no output_shape specified, output data will be 1 dim indices after flattening. This transform can help pre-compute indices of the class regions for other transforms. A typical usage is to randomly select indices of classes to crop. The main logic is based on monai.transforms.utils.map_classes_to_indices.

Parameters
  • num_classes (Optional[int]) – number of classes for argmax label, not necessary for One-Hot label.

  • image_threshold (float) – if enabled image at runtime, use image > image_threshold to determine the valid image content area and select only the indices of classes in this area.

  • output_shape (Optional[Sequence[int]]) – expected shape of output indices. if not None, unravel indices to specified shape.

__call__(label, image=None, output_shape=None)[source]
Parameters
  • label (Union[ndarray, Tensor]) – input data to compute the indices of every class.

  • image (Union[ndarray, Tensor, None]) – if image is not None, use image > image_threshold to define valid region, and only select the indices within the valid region.

  • output_shape (Optional[Sequence[int]]) – expected shape of output indices. if None, use self.output_shape instead.

Return type

List[Union[ndarray, Tensor]]

__init__(num_classes=None, image_threshold=0.0, output_shape=None)[source]

Compute indices of every class of the input label data, return a list of indices. If no output_shape specified, output data will be 1 dim indices after flattening. This transform can help pre-compute indices of the class regions for other transforms. A typical usage is to randomly select indices of classes to crop. The main logic is based on monai.transforms.utils.map_classes_to_indices.

Parameters
  • num_classes (Optional[int]) – number of classes for argmax label, not necessary for One-Hot label.

  • image_threshold (float) – if enabled image at runtime, use image > image_threshold to determine the valid image content area and select only the indices of classes in this area.

  • output_shape (Optional[Sequence[int]]) – expected shape of output indices. if not None, unravel indices to specified shape.

ConvertToMultiChannelBasedOnBratsClasses

class monai.transforms.ConvertToMultiChannelBasedOnBratsClasses[source]

Convert labels to multi channels based on brats18 classes: label 1 is the necrotic and non-enhancing tumor core label 2 is the the peritumoral edema label 4 is the GD-enhancing tumor The possible classes are TC (Tumor core), WT (Whole tumor) and ET (Enhancing tumor).

__call__(img)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Union[ndarray, Tensor]

AddExtremePointsChannel

class monai.transforms.AddExtremePointsChannel(background=0, pert=0.0)[source]

Add extreme points of label to the image as a new channel. This transform generates extreme point from label and applies a gaussian filter. The pixel values in points image are rescaled to range [rescale_min, rescale_max] and added as a new channel to input image. The algorithm is described in Roth et al., Going to Extremes: Weakly Supervised Medical Image Segmentation https://arxiv.org/abs/2009.11988.

This transform only supports single channel labels (1, spatial_dim1, [spatial_dim2, …]). The background index is ignored when calculating extreme points.

Parameters
  • background (int) – Class index of background label, defaults to 0.

  • pert (float) – Random perturbation amount to add to the points, defaults to 0.0.

Raises
  • ValueError – When no label image provided.

  • ValueError – When label image is not single channel.

__call__(img, label=None, sigma=3.0, rescale_min=- 1.0, rescale_max=1.0)[source]
Parameters
  • img (Union[ndarray, Tensor]) – the image that we want to add new channel to.

  • label (Union[ndarray, Tensor, None]) – label image to get extreme points from. Shape must be (1, spatial_dim1, [, spatial_dim2, …]). Doesn’t support one-hot labels.

  • sigma (Union[Sequence[float], float, Sequence[Tensor], Tensor]) – if a list of values, must match the count of spatial dimensions of input data, and apply every value in the list to 1 spatial dimension. if only 1 value provided, use it for all spatial dimensions.

  • rescale_min (float) – minimum value of output data.

  • rescale_max (float) – maximum value of output data.

Return type

Union[ndarray, Tensor]

randomize(label)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

None

TorchVision

class monai.transforms.TorchVision(name, *args, **kwargs)[source]

This is a wrapper transform for PyTorch TorchVision transform based on the specified transform name and args. As most of the TorchVision transforms only work for PIL image and PyTorch Tensor, this transform expects input data to be PyTorch Tensor, users can easily call ToTensor transform to convert a Numpy array to Tensor.

Parameters
  • name (str) – The transform name in TorchVision package.

  • args – parameters for the TorchVision transform.

  • kwargs – parameters for the TorchVision transform.

__call__(img)[source]
Parameters

img (Union[ndarray, Tensor]) – PyTorch Tensor data for the TorchVision transform.

__init__(name, *args, **kwargs)[source]
Parameters
  • name (str) – The transform name in TorchVision package.

  • args – parameters for the TorchVision transform.

  • kwargs – parameters for the TorchVision transform.

MapLabelValue

class monai.transforms.MapLabelValue(orig_labels, target_labels, dtype=<class 'numpy.float32'>)[source]

Utility to map label values to another set of values. For example, map [3, 2, 1] to [0, 1, 2], [1, 2, 3] -> [0.5, 1.5, 2.5], [“label3”, “label2”, “label1”] -> [0, 1, 2], [3.5, 2.5, 1.5] -> [“label0”, “label1”, “label2”], etc. The label data must be numpy array or array-like data and the output data will be numpy array.

Parameters
  • orig_labels (Sequence) – original labels that map to others.

  • target_labels (Sequence) – expected label values, 1: 1 map to the orig_labels.

  • dtype (Union[dtype, type, None]) – convert the output data to dtype, default to float32.

__call__(img)[source]

Call self as a function.

__init__(orig_labels, target_labels, dtype=<class 'numpy.float32'>)[source]
Parameters
  • orig_labels (Sequence) – original labels that map to others.

  • target_labels (Sequence) – expected label values, 1: 1 map to the orig_labels.

  • dtype (Union[dtype, type, None]) – convert the output data to dtype, default to float32.

EnsureType

class monai.transforms.EnsureType(data_type='tensor', dtype=None, device=None, wrap_sequence=True)[source]

Ensure the input data to be a PyTorch Tensor or numpy array, support: numpy array, PyTorch Tensor, float, int, bool, string and object keep the original. If passing a dictionary, list or tuple, still return dictionary, list or tuple will recursively convert every item to the expected data type if wrap_sequence=False.

Parameters
  • data_type (str) – target data type to convert, should be “tensor” or “numpy”.

  • dtype (Union[dtype, type, None, dtype]) – target data content type to convert, for example: np.float32, torch.float, etc.

  • device (Optional[device]) – for Tensor data type, specify the target device.

  • wrap_sequence (bool) – if False, then lists will recursively call this function, default to True. E.g., if False, [1, 2] -> [tensor(1), tensor(2)], if True, then [1, 2] -> tensor([1, 2]).

__call__(data)[source]
Parameters

data (Union[ndarray, Tensor]) – input data can be PyTorch Tensor, numpy array, list, dictionary, int, float, bool, str, etc. will ensure Tensor, Numpy array, float, int, bool as Tensors or numpy arrays, strings and objects keep the original. for dictionary, list or tuple, ensure every item as expected type if applicable and wrap_sequence=False.

IntensityStats

class monai.transforms.IntensityStats(ops, key_prefix, channel_wise=False)[source]

Compute statistics for the intensity values of input image and store into the meta data dictionary. For example: if ops=[lambda x: np.mean(x), “max”] and key_prefix=”orig”, may generate below stats: {“orig_custom_0”: 1.5, “orig_max”: 3.0}.

Parameters
  • ops (Sequence[Union[str, Callable]]) – expected operations to compute statistics for the intensity. if a string, will map to the predefined operations, supported: [“mean”, “median”, “max”, “min”, “std”] mapping to np.nanmean, np.nanmedian, np.nanmax, np.nanmin, np.nanstd. if a callable function, will execute the function on input image.

  • key_prefix (str) – the prefix to combine with ops name to generate the key to store the results in the meta data dictionary. if some ops are callable functions, will use “{key_prefix}_custom_{index}” as the key, where index counts from 0.

  • channel_wise (bool) – whether to compute statistics for every channel of input image separately. if True, return a list of values for every operation, default to False.

__call__(img, meta_data=None, mask=None)[source]

Compute statistics for the intensity of input image.

Parameters
  • img (Union[ndarray, Tensor]) – input image to compute intensity stats.

  • meta_data (Optional[Dict]) – meta data dictionary to store the statistics data, if None, will create an empty dictionary.

  • mask (Optional[ndarray]) – if not None, mask the image to extract only the interested area to compute statistics. mask must have the same shape as input img.

Return type

Tuple[Union[ndarray, Tensor], Dict]

ToDevice

class monai.transforms.ToDevice(device, **kwargs)[source]

Move PyTorch Tensor to the specified device. It can help cache data into GPU and execute following logic on GPU directly.

Note

If moving data to GPU device in the multi-processing workers of DataLoader, may got below CUDA error: “RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the ‘spawn’ start method.” So usually suggest to set num_workers=0 in the DataLoader or ThreadDataLoader.

Parameters
__call__(img)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

__init__(device, **kwargs)[source]
Parameters

CuCIM

class monai.transforms.CuCIM(name, *args, **kwargs)[source]

Wrap a non-randomized cuCIM transform, defined based on the transform name and args. For randomized transforms (or randomly applying a transform) use monai.transforms.RandCuCIM.

Parameters
  • name (str) – the transform name in CuCIM package

  • args – parameters for the CuCIM transform

  • kwargs – parameters for the CuCIM transform

Note

CuCIM transform only work with CuPy arrays, so this transform expects input data to be cupy.ndarray. Users can call ToCuPy transform to convert a numpy array or torch tensor to cupy array.

__call__(data)[source]
Parameters

data – a CuPy array (cupy.ndarray) for the cuCIM transform

Returns

cupy.ndarray

RandCuCIM

class monai.transforms.RandCuCIM(name, apply_prob=1.0, *args, **kwargs)[source]

Wrap a randomized cuCIM transform, defined based on the transform name and args, or randomly apply a non-randomized transform. For deterministic non-randomized transforms use monai.transforms.CuCIM.

Parameters
  • name (str) – the transform name in CuCIM package.

  • apply_prob (float) – the probability to apply the transform (default=1.0)

  • args – parameters for the CuCIM transform.

  • kwargs – parameters for the CuCIM transform.

Note

  • CuCIM transform only work with CuPy arrays, so this transform expects input data to be cupy.ndarray. Users can call ToCuPy transform to convert a numpy array or torch tensor to cupy array.

  • If the cuCIM transform is already randomized the apply_prob argument has nothing to do with the randomness of the underlying cuCIM transform. apply_prob defines if the transform (either randomized or non-randomized) being applied randomly, so it can apply non-randomized transforms randomly but be careful with setting apply_prob to anything than 1.0 when using along with cuCIM’s randomized transforms.

  • If the random factor of the underlying cuCIM transform is not derived from self.R, the results may not be deterministic. See Also: monai.transforms.Randomizable.

__call__(data)[source]
Parameters

data – a CuPy array (cupy.ndarray) for the cuCIM transform

Returns

cupy.ndarray

Dictionary Transforms

Crop and Pad (Dict)

SpatialPadd

example of SpatialPadd
class monai.transforms.SpatialPadd(keys, spatial_size, method=Method.SYMMETRIC, mode=NumpyPadMode.CONSTANT, allow_missing_keys=False, **kwargs)[source]

Dictionary-based wrapper of monai.transforms.SpatialPad. Performs padding to the data, symmetric for all sides or all on one side for each dimension.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • spatial_size (Union[Sequence[int], int]) – the spatial size of output data after padding, if a dimension of the input data size is bigger than the pad size, will not pad that dimension. If its components have non-positive values, the corresponding size of input image will be used. for example: if the spatial size of input data is [30, 30, 30] and spatial_size=[32, 25, -1], the spatial size of output data will be [32, 30, 30].

  • method (Union[Method, str]) – {"symmetric", "end"} Pad image symmetrically on every side or only pad at the end sides. Defaults to "symmetric".

  • mode (Union[Sequence[Union[NumpyPadMode, PytorchPadMode, str]], NumpyPadMode, PytorchPadMode, str]) – available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate", "circular"}. One of the listed string values or a user supplied function. Defaults to "constant". See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html It also can be a sequence of string, each element corresponds to a key in keys.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • kwargs – other arguments for the np.pad or torch.pad function. note that np.pad treats channel dimension as the first dimension.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, spatial_size, method=Method.SYMMETRIC, mode=NumpyPadMode.CONSTANT, allow_missing_keys=False, **kwargs)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • spatial_size (Union[Sequence[int], int]) – the spatial size of output data after padding, if a dimension of the input data size is bigger than the pad size, will not pad that dimension. If its components have non-positive values, the corresponding size of input image will be used. for example: if the spatial size of input data is [30, 30, 30] and spatial_size=[32, 25, -1], the spatial size of output data will be [32, 30, 30].

  • method (Union[Method, str]) – {"symmetric", "end"} Pad image symmetrically on every side or only pad at the end sides. Defaults to "symmetric".

  • mode (Union[Sequence[Union[NumpyPadMode, PytorchPadMode, str]], NumpyPadMode, PytorchPadMode, str]) – available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate", "circular"}. One of the listed string values or a user supplied function. Defaults to "constant". See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html It also can be a sequence of string, each element corresponds to a key in keys.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • kwargs – other arguments for the np.pad or torch.pad function. note that np.pad treats channel dimension as the first dimension.

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

BorderPadd

example of BorderPadd
class monai.transforms.BorderPadd(keys, spatial_border, mode=NumpyPadMode.CONSTANT, allow_missing_keys=False, **kwargs)[source]

Pad the input data by adding specified borders to every dimension. Dictionary-based wrapper of monai.transforms.BorderPad.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • spatial_border (Union[Sequence[int], int]) –

    specified size for every spatial border. it can be 3 shapes:

    • single int number, pad all the borders with the same size.

    • length equals the length of image shape, pad every spatial dimension separately. for example, image shape(CHW) is [1, 4, 4], spatial_border is [2, 1], pad every border of H dim with 2, pad every border of W dim with 1, result shape is [1, 8, 6].

    • length equals 2 x (length of image shape), pad every border of every dimension separately. for example, image shape(CHW) is [1, 4, 4], spatial_border is [1, 2, 3, 4], pad top of H dim with 1, pad bottom of H dim with 2, pad left of W dim with 3, pad right of W dim with 4. the result shape is [1, 7, 11].

  • mode (Union[Sequence[Union[NumpyPadMode, PytorchPadMode, str]], NumpyPadMode, PytorchPadMode, str]) – available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate", "circular"}. One of the listed string values or a user supplied function. Defaults to "constant". See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html It also can be a sequence of string, each element corresponds to a key in keys.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • kwargs – other arguments for the np.pad or torch.pad function. note that np.pad treats channel dimension as the first dimension.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, spatial_border, mode=NumpyPadMode.CONSTANT, allow_missing_keys=False, **kwargs)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • spatial_border (Union[Sequence[int], int]) –

    specified size for every spatial border. it can be 3 shapes:

    • single int number, pad all the borders with the same size.

    • length equals the length of image shape, pad every spatial dimension separately. for example, image shape(CHW) is [1, 4, 4], spatial_border is [2, 1], pad every border of H dim with 2, pad every border of W dim with 1, result shape is [1, 8, 6].

    • length equals 2 x (length of image shape), pad every border of every dimension separately. for example, image shape(CHW) is [1, 4, 4], spatial_border is [1, 2, 3, 4], pad top of H dim with 1, pad bottom of H dim with 2, pad left of W dim with 3, pad right of W dim with 4. the result shape is [1, 7, 11].

  • mode (Union[Sequence[Union[NumpyPadMode, PytorchPadMode, str]], NumpyPadMode, PytorchPadMode, str]) – available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate", "circular"}. One of the listed string values or a user supplied function. Defaults to "constant". See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html It also can be a sequence of string, each element corresponds to a key in keys.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • kwargs – other arguments for the np.pad or torch.pad function. note that np.pad treats channel dimension as the first dimension.

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

DivisiblePadd

example of DivisiblePadd
class monai.transforms.DivisiblePadd(keys, k, mode=NumpyPadMode.CONSTANT, method=Method.SYMMETRIC, allow_missing_keys=False, **kwargs)[source]

Pad the input data, so that the spatial sizes are divisible by k. Dictionary-based wrapper of monai.transforms.DivisiblePad.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • k (Union[Sequence[int], int]) – the target k for each spatial dimension. if k is negative or 0, the original size is preserved. if k is an int, the same k be applied to all the input spatial dimensions.

  • mode (Union[Sequence[Union[NumpyPadMode, PytorchPadMode, str]], NumpyPadMode, PytorchPadMode, str]) – available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate", "circular"}. One of the listed string values or a user supplied function. Defaults to "constant". See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html It also can be a sequence of string, each element corresponds to a key in keys.

  • method (Union[Method, str]) – {"symmetric", "end"} Pad image symmetrically on every side or only pad at the end sides. Defaults to "symmetric".

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • kwargs – other arguments for the np.pad or torch.pad function. note that np.pad treats channel dimension as the first dimension.

See also monai.transforms.SpatialPad

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, k, mode=NumpyPadMode.CONSTANT, method=Method.SYMMETRIC, allow_missing_keys=False, **kwargs)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • k (Union[Sequence[int], int]) – the target k for each spatial dimension. if k is negative or 0, the original size is preserved. if k is an int, the same k be applied to all the input spatial dimensions.

  • mode (Union[Sequence[Union[NumpyPadMode, PytorchPadMode, str]], NumpyPadMode, PytorchPadMode, str]) – available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate", "circular"}. One of the listed string values or a user supplied function. Defaults to "constant". See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html It also can be a sequence of string, each element corresponds to a key in keys.

  • method (Union[Method, str]) – {"symmetric", "end"} Pad image symmetrically on every side or only pad at the end sides. Defaults to "symmetric".

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • kwargs – other arguments for the np.pad or torch.pad function. note that np.pad treats channel dimension as the first dimension.

See also monai.transforms.SpatialPad

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

SpatialCropd

example of SpatialCropd
class monai.transforms.SpatialCropd(keys, roi_center=None, roi_size=None, roi_start=None, roi_end=None, roi_slices=None, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.SpatialCrop. General purpose cropper to produce sub-volume region of interest (ROI). If a dimension of the expected ROI size is bigger than the input image size, will not crop that dimension. So the cropped result may be smaller than the expected ROI, and the cropped results of several images may not have exactly the same shape. It can support to crop ND spatial (channel-first) data.

The cropped region can be parameterised in various ways:
  • a list of slices for each spatial dimension (allows for use of -ve indexing and None)

  • a spatial center and size

  • the start and end coordinates of the ROI

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • roi_center (Optional[Sequence[int]]) – voxel coordinates for center of the crop ROI.

  • roi_size (Optional[Sequence[int]]) – size of the crop ROI, if a dimension of ROI size is bigger than image size, will not crop that dimension of the image.

  • roi_start (Optional[Sequence[int]]) – voxel coordinates for start of the crop ROI.

  • roi_end (Optional[Sequence[int]]) – voxel coordinates for end of the crop ROI, if a coordinate is out of image, use the end coordinate of image.

  • roi_slices (Optional[Sequence[slice]]) – list of slices for each of the spatial dimensions.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, roi_center=None, roi_size=None, roi_start=None, roi_end=None, roi_slices=None, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • roi_center (Optional[Sequence[int]]) – voxel coordinates for center of the crop ROI.

  • roi_size (Optional[Sequence[int]]) – size of the crop ROI, if a dimension of ROI size is bigger than image size, will not crop that dimension of the image.

  • roi_start (Optional[Sequence[int]]) – voxel coordinates for start of the crop ROI.

  • roi_end (Optional[Sequence[int]]) – voxel coordinates for end of the crop ROI, if a coordinate is out of image, use the end coordinate of image.

  • roi_slices (Optional[Sequence[slice]]) – list of slices for each of the spatial dimensions.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

CenterSpatialCropd

example of CenterSpatialCropd
class monai.transforms.CenterSpatialCropd(keys, roi_size, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.CenterSpatialCrop. If a dimension of the expected ROI size is bigger than the input image size, will not crop that dimension. So the cropped result may be smaller than the expected ROI, and the cropped results of several images may not have exactly the same shape.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.MapTransform

  • roi_size (Union[Sequence[int], int]) – the size of the crop region e.g. [224,224,128] if a dimension of ROI size is bigger than image size, will not crop that dimension of the image. If its components have non-positive values, the corresponding size of input image will be used. for example: if the spatial size of input data is [40, 40, 40] and roi_size=[32, 64, -1], the spatial size of output data will be [32, 40, 40].

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

RandSpatialCropd

example of RandSpatialCropd
class monai.transforms.RandSpatialCropd(keys, roi_size, max_roi_size=None, random_center=True, random_size=True, allow_missing_keys=False)[source]

Dictionary-based version monai.transforms.RandSpatialCrop. Crop image with random size or specific size ROI. It can crop at a random position as center or at the image center. And allows to set the minimum and maximum size to limit the randomly generated ROI. Suppose all the expected fields specified by keys have same shape.

Note: even random_size=False, if a dimension of the expected ROI size is bigger than the input image size, will not crop that dimension. So the cropped result may be smaller than the expected ROI, and the cropped results of several images may not have exactly the same shape.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.MapTransform

  • roi_size (Union[Sequence[int], int]) – if random_size is True, it specifies the minimum crop region. if random_size is False, it specifies the expected ROI size to crop. e.g. [224, 224, 128] if a dimension of ROI size is bigger than image size, will not crop that dimension of the image. If its components have non-positive values, the corresponding size of input image will be used. for example: if the spatial size of input data is [40, 40, 40] and roi_size=[32, 64, -1], the spatial size of output data will be [32, 40, 40].

  • max_roi_size (Union[Sequence[int], int, None]) – if random_size is True and roi_size specifies the min crop region size, max_roi_size can specify the max crop region size. if None, defaults to the input image size. if its components have non-positive values, the corresponding size of input image will be used.

  • random_center (bool) – crop at random position as center or the image center.

  • random_size (bool) – crop with random size or specific size ROI. if True, the actual size is sampled from: randint(roi_scale * image spatial size, max_roi_scale * image spatial size + 1).

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

Call self as a function.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

randomize(img_size)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

None

RandSpatialCropSamplesd

example of RandSpatialCropSamplesd
class monai.transforms.RandSpatialCropSamplesd(keys, roi_size, num_samples, max_roi_size=None, random_center=True, random_size=True, meta_keys=None, meta_key_postfix='meta_dict', allow_missing_keys=False)[source]

Dictionary-based version monai.transforms.RandSpatialCropSamples. Crop image with random size or specific size ROI to generate a list of N samples. It can crop at a random position as center or at the image center. And allows to set the minimum size to limit the randomly generated ROI. Suppose all the expected fields specified by keys have same shape, and add patch_index to the corresponding meta data. It will return a list of dictionaries for all the cropped images.

Note: even random_size=False, if a dimension of the expected ROI size is bigger than the input image size, will not crop that dimension. So the cropped result may be smaller than the expected ROI, and the cropped results of several images may not have exactly the same shape.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.MapTransform

  • roi_size (Union[Sequence[int], int]) – if random_size is True, it specifies the minimum crop region. if random_size is False, it specifies the expected ROI size to crop. e.g. [224, 224, 128] if a dimension of ROI size is bigger than image size, will not crop that dimension of the image. If its components have non-positive values, the corresponding size of input image will be used. for example: if the spatial size of input data is [40, 40, 40] and roi_size=[32, 64, -1], the spatial size of output data will be [32, 40, 40].

  • num_samples (int) – number of samples (crop regions) to take in the returned list.

  • max_roi_size (Union[Sequence[int], int, None]) – if random_size is True and roi_size specifies the min crop region size, max_roi_size can specify the max crop region size. if None, defaults to the input image size. if its components have non-positive values, the corresponding size of input image will be used.

  • random_center (bool) – crop at random position as center or the image center.

  • random_size (bool) – crop with random size or specific size ROI. The actual size is sampled from randint(roi_size, img_size).

  • meta_keys (Union[Collection[Hashable], Hashable, None]) – explicitly indicate the key of the corresponding meta data dictionary. used to add patch_index to the meta dict. for example, for data with key image, the metadata by default is in image_meta_dict. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by key_{meta_key_postfix}.

  • meta_key_postfix (str) – if meta_keys is None, use key_{postfix} to to fetch the meta data according to the key data, default is meta_dict, the meta data is a dictionary object. used to add patch_index to the meta dict.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

Raises

ValueError – When num_samples is nonpositive.

__call__(data)[source]

Call self as a function.

Return type

List[Dict[Hashable, Union[ndarray, Tensor]]]

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Any]

randomize(data=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

None

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandSpatialCropSamplesd

Returns

a Randomizable instance.

CropForegroundd

example of CropForegroundd
class monai.transforms.CropForegroundd(keys, source_key, select_fn=<function is_positive>, channel_indices=None, margin=0, k_divisible=1, mode=NumpyPadMode.CONSTANT, start_coord_key='foreground_start_coord', end_coord_key='foreground_end_coord', allow_missing_keys=False, **np_kwargs)[source]

Dictionary-based version monai.transforms.CropForeground. Crop only the foreground object of the expected images. The typical usage is to help training and evaluation if the valid part is small in the whole medical image. The valid part can be determined by any field in the data with source_key, for example: - Select values > 0 in image field as the foreground and crop on all fields specified by keys. - Select label = 3 in label field as the foreground to crop on all fields specified by keys. - Select label > 0 in the third channel of a One-Hot label field as the foreground to crop all keys fields. Users can define arbitrary function to select expected foreground from the whole source image or specified channels. And it can also add margin to every dim of the bounding box of foreground object.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • source_key (str) – data source to generate the bounding box of foreground, can be image or label, etc.

  • select_fn (Callable) – function to select expected foreground, default is to select values > 0.

  • channel_indices (Union[Iterable[int], int, None]) – if defined, select foreground only on the specified channels of image. if None, select foreground on the whole image.

  • margin (Union[Sequence[int], int]) – add margin value to spatial dims of the bounding box, if only 1 value provided, use it for all dims.

  • k_divisible (Union[Sequence[int], int]) – make each spatial dimension to be divisible by k, default to 1. if k_divisible is an int, the same k be applied to all the input spatial dimensions.

  • mode (Union[NumpyPadMode, PytorchPadMode, str, None]) – available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate", "circular"}. One of the listed string values or a user supplied function. Defaults to "constant". See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html it also can be a sequence of string, each element corresponds to a key in keys.

  • start_coord_key (str) – key to record the start coordinate of spatial bounding box for foreground.

  • end_coord_key (str) – key to record the end coordinate of spatial bounding box for foreground.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • np_kwargs – other args for np.pad API, note that np.pad treats channel dimension as the first dimension. more details: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, source_key, select_fn=<function is_positive>, channel_indices=None, margin=0, k_divisible=1, mode=NumpyPadMode.CONSTANT, start_coord_key='foreground_start_coord', end_coord_key='foreground_end_coord', allow_missing_keys=False, **np_kwargs)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • source_key (str) – data source to generate the bounding box of foreground, can be image or label, etc.

  • select_fn (Callable) – function to select expected foreground, default is to select values > 0.

  • channel_indices (Union[Iterable[int], int, None]) – if defined, select foreground only on the specified channels of image. if None, select foreground on the whole image.

  • margin (Union[Sequence[int], int]) – add margin value to spatial dims of the bounding box, if only 1 value provided, use it for all dims.

  • k_divisible (Union[Sequence[int], int]) – make each spatial dimension to be divisible by k, default to 1. if k_divisible is an int, the same k be applied to all the input spatial dimensions.

  • mode (Union[NumpyPadMode, PytorchPadMode, str, None]) – available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate", "circular"}. One of the listed string values or a user supplied function. Defaults to "constant". See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html it also can be a sequence of string, each element corresponds to a key in keys.

  • start_coord_key (str) – key to record the start coordinate of spatial bounding box for foreground.

  • end_coord_key (str) – key to record the end coordinate of spatial bounding box for foreground.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • np_kwargs – other args for np.pad API, note that np.pad treats channel dimension as the first dimension. more details: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

RandWeightedCropd

example of RandWeightedCropd
class monai.transforms.RandWeightedCropd(keys, w_key, spatial_size, num_samples=1, center_coord_key=None, meta_keys=None, meta_key_postfix='meta_dict', allow_missing_keys=False)[source]

Samples a list of num_samples image patches according to the provided weight_map.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • w_key (str) – key for the weight map. The corresponding value will be used as the sampling weights, it should be a single-channel array in size, for example, (1, spatial_dim_0, spatial_dim_1, …)

  • spatial_size (Union[Sequence[int], int]) – the spatial size of the image patch e.g. [224, 224, 128]. If its components have non-positive values, the corresponding size of img will be used.

  • num_samples (int) – number of samples (image patches) to take in the returned list.

  • center_coord_key (Optional[str]) – if specified, the actual sampling location will be stored with the corresponding key.

  • meta_keys (Union[Collection[Hashable], Hashable, None]) – explicitly indicate the key of the corresponding meta data dictionary. used to add patch_index to the meta dict. for example, for data with key image, the metadata by default is in image_meta_dict. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by key_{meta_key_postfix}.

  • meta_key_postfix (str) – if meta_keys is None, use key_{postfix} to to fetch the meta data according to the key data, default is meta_dict, the meta data is a dictionary object. used to add patch_index to the meta dict.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

Call self as a function.

Return type

List[Dict[Hashable, Union[ndarray, Tensor]]]

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

randomize(weight_map)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

None

RandCropByPosNegLabeld

example of RandCropByPosNegLabeld
class monai.transforms.RandCropByPosNegLabeld(keys, label_key, spatial_size, pos=1.0, neg=1.0, num_samples=1, image_key=None, image_threshold=0.0, fg_indices_key=None, bg_indices_key=None, meta_keys=None, meta_key_postfix='meta_dict', allow_smaller=False, allow_missing_keys=False)[source]

Dictionary-based version monai.transforms.RandCropByPosNegLabel. Crop random fixed sized regions with the center being a foreground or background voxel based on the Pos Neg Ratio. Suppose all the expected fields specified by keys have same shape, and add patch_index to the corresponding meta data. And will return a list of dictionaries for all the cropped images.

If a dimension of the expected spatial size is bigger than the input image size, will not crop that dimension. So the cropped result may be smaller than the expected size, and the cropped results of several images may not have exactly the same shape.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • label_key (str) – name of key for label image, this will be used for finding foreground/background.

  • spatial_size (Union[Sequence[int], int]) – the spatial size of the crop region e.g. [224, 224, 128]. if a dimension of ROI size is bigger than image size, will not crop that dimension of the image. if its components have non-positive values, the corresponding size of data[label_key] will be used. for example: if the spatial size of input data is [40, 40, 40] and spatial_size=[32, 64, -1], the spatial size of output data will be [32, 40, 40].

  • pos (float) – used with neg together to calculate the ratio pos / (pos + neg) for the probability to pick a foreground voxel as a center rather than a background voxel.

  • neg (float) – used with pos together to calculate the ratio pos / (pos + neg) for the probability to pick a foreground voxel as a center rather than a background voxel.

  • num_samples (int) – number of samples (crop regions) to take in each list.

  • image_key (Optional[str]) – if image_key is not None, use label == 0 & image > image_threshold to select the negative sample(background) center. so the crop center will only exist on valid image area.

  • image_threshold (float) – if enabled image_key, use image > image_threshold to determine the valid image content area.

  • fg_indices_key (Optional[str]) – if provided pre-computed foreground indices of label, will ignore above image_key and image_threshold, and randomly select crop centers based on them, need to provide fg_indices_key and bg_indices_key together, expect to be 1 dim array of spatial indices after flattening. a typical usage is to call FgBgToIndicesd transform first and cache the results.

  • bg_indices_key (Optional[str]) – if provided pre-computed background indices of label, will ignore above image_key and image_threshold, and randomly select crop centers based on them, need to provide fg_indices_key and bg_indices_key together, expect to be 1 dim array of spatial indices after flattening. a typical usage is to call FgBgToIndicesd transform first and cache the results.

  • meta_keys (Union[Collection[Hashable], Hashable, None]) – explicitly indicate the key of the corresponding meta data dictionary. used to add patch_index to the meta dict. for example, for data with key image, the metadata by default is in image_meta_dict. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by key_{meta_key_postfix}.

  • meta_key_postfix (str) – if meta_keys is None, use key_{postfix} to to fetch the meta data according to the key data, default is meta_dict, the meta data is a dictionary object. used to add patch_index to the meta dict.

  • allow_smaller (bool) – if False, an exception will be raised if the image is smaller than the requested ROI in any dimension. If True, any smaller dimensions will be set to match the cropped size (i.e., no cropping in that dimension).

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

Raises
  • ValueError – When pos or neg are negative.

  • ValueError – When pos=0 and neg=0. Incompatible values.

__call__(data)[source]

Call self as a function.

Return type

List[Dict[Hashable, Union[ndarray, Tensor]]]

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

randomize(label, fg_indices=None, bg_indices=None, image=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

None

RandCropByLabelClassesd

example of RandCropByLabelClassesd
class monai.transforms.RandCropByLabelClassesd(keys, label_key, spatial_size, ratios=None, num_classes=None, num_samples=1, image_key=None, image_threshold=0.0, indices_key=None, meta_keys=None, meta_key_postfix='meta_dict', allow_smaller=False, allow_missing_keys=False)[source]

Dictionary-based version monai.transforms.RandCropByLabelClasses. Crop random fixed sized regions with the center being a class based on the specified ratios of every class. The label data can be One-Hot format array or Argmax data. And will return a list of arrays for all the cropped images. For example, crop two (3 x 3) arrays from (5 x 5) array with ratios=[1, 2, 3, 1]:

cropper = RandCropByLabelClassesd(
    keys=["image", "label"],
    label_key="label",
    spatial_size=[3, 3],
    ratios=[1, 2, 3, 1],
    num_classes=4,
    num_samples=2,
)
data = {
    "image": np.array([
        [[0.0, 0.3, 0.4, 0.2, 0.0],
        [0.0, 0.1, 0.2, 0.1, 0.4],
        [0.0, 0.3, 0.5, 0.2, 0.0],
        [0.1, 0.2, 0.1, 0.1, 0.0],
        [0.0, 0.1, 0.2, 0.1, 0.0]]
    ]),
    "label": np.array([
        [[0, 0, 0, 0, 0],
        [0, 1, 2, 1, 0],
        [0, 1, 3, 0, 0],
        [0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0]]
    ]),
}
result = cropper(data)

The 2 randomly cropped samples of `label` can be:
[[0, 1, 2],     [[0, 0, 0],
 [0, 1, 3],      [1, 2, 1],
 [0, 0, 0]]      [1, 3, 0]]

If a dimension of the expected spatial size is bigger than the input image size, will not crop that dimension. So the cropped result may be smaller than expected size, and the cropped results of several images may not have exactly same shape.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • label_key (str) – name of key for label image, this will be used for finding indices of every class.

  • spatial_size (Union[Sequence[int], int]) – the spatial size of the crop region e.g. [224, 224, 128]. if a dimension of ROI size is bigger than image size, will not crop that dimension of the image. if its components have non-positive values, the corresponding size of label will be used. for example: if the spatial size of input data is [40, 40, 40] and spatial_size=[32, 64, -1], the spatial size of output data will be [32, 40, 40].

  • ratios (Optional[List[Union[float, int]]]) – specified ratios of every class in the label to generate crop centers, including background class. if None, every class will have the same ratio to generate crop centers.

  • num_classes (Optional[int]) – number of classes for argmax label, not necessary for One-Hot label.

  • num_samples (int) – number of samples (crop regions) to take in each list.

  • image_key (Optional[str]) – if image_key is not None, only return the indices of every class that are within the valid region of the image (image > image_threshold).

  • image_threshold (float) – if enabled image_key, use image > image_threshold to determine the valid image content area and select class indices only in this area.

  • indices_key (Optional[str]) – if provided pre-computed indices of every class, will ignore above image and image_threshold, and randomly select crop centers based on them, expect to be 1 dim array of spatial indices after flattening. a typical usage is to call ClassesToIndices transform first and cache the results for better performance.

  • meta_keys (Union[Collection[Hashable], Hashable, None]) – explicitly indicate the key of the corresponding meta data dictionary. used to add patch_index to the meta dict. for example, for data with key image, the metadata by default is in image_meta_dict. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by key_{meta_key_postfix}.

  • meta_key_postfix (str) – if meta_keys is None, use key_{postfix} to to fetch the meta data according to the key data, default is meta_dict, the meta data is a dictionary object. used to add patch_index to the meta dict.

  • allow_smaller (bool) – if False, an exception will be raised if the image is smaller than the requested ROI in any dimension. If True, any smaller dimensions will remain unchanged.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

Call self as a function.

Return type

List[Dict[Hashable, Union[ndarray, Tensor]]]

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

randomize(label, indices=None, image=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

None

ResizeWithPadOrCropd

example of ResizeWithPadOrCropd
class monai.transforms.ResizeWithPadOrCropd(keys, spatial_size, mode=NumpyPadMode.CONSTANT, allow_missing_keys=False, method=Method.SYMMETRIC, **np_kwargs)[source]

Dictionary-based wrapper of monai.transforms.ResizeWithPadOrCrop.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.MapTransform

  • spatial_size (Union[Sequence[int], int]) – the spatial size of output data after padding or crop. If has non-positive values, the corresponding size of input image will be used (no padding).

  • mode (Union[Sequence[Union[NumpyPadMode, str]], NumpyPadMode, str]) – {"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} One of the listed string values or a user supplied function for padding. Defaults to "constant". See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html It also can be a sequence of string, each element corresponds to a key in keys.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • method (Union[Method, str]) – {"symmetric", "end"} Pad image symmetrically on every side or only pad at the end sides. Defaults to "symmetric".

  • np_kwargs – other args for np.pad API, note that np.pad treats channel dimension as the first dimension. more details: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

BoundingRectd

class monai.transforms.BoundingRectd(keys, bbox_key_postfix='bbox', select_fn=<function is_positive>, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.BoundingRect.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.MapTransform

  • bbox_key_postfix (str) – the output bounding box coordinates will be written to the value of {key}_{bbox_key_postfix}.

  • select_fn (Callable) – function to select expected foreground, default is to select values > 0.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

See also: monai.transforms.utils.generate_spatial_bounding_box.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

RandScaleCropd

example of RandScaleCropd
class monai.transforms.RandScaleCropd(keys, roi_scale, max_roi_scale=None, random_center=True, random_size=True, allow_missing_keys=False)[source]

Dictionary-based version monai.transforms.RandScaleCrop. Crop image with random size or specific size ROI. It can crop at a random position as center or at the image center. And allows to set the minimum and maximum scale of image size to limit the randomly generated ROI. Suppose all the expected fields specified by keys have same shape.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.MapTransform

  • roi_scale (Union[Sequence[float], float]) – if random_size is True, it specifies the minimum crop size: roi_scale * image spatial size. if random_size is False, it specifies the expected scale of image size to crop. e.g. [0.3, 0.4, 0.5]. If its components have non-positive values, will use 1.0 instead, which means the input image size.

  • max_roi_size – if random_size is True and roi_scale specifies the min crop region size, max_roi_scale can specify the max crop region size: max_roi_scale * image spatial size. if None, defaults to the input image size. if its components have non-positive values, will use 1.0 instead, which means the input image size.

  • random_center (bool) – crop at random position as center or the image center.

  • random_size (bool) – crop with random size or specified size ROI by roi_scale * image spatial size. if True, the actual size is sampled from: randint(roi_scale * image spatial size, max_roi_scale * image spatial size + 1).

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

Call self as a function.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

CenterScaleCropd

example of CenterScaleCropd
class monai.transforms.CenterScaleCropd(keys, roi_scale, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.CenterScaleCrop. Note: as using the same scaled ROI to crop, all the input data specified by keys should have the same spatial shape.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.MapTransform

  • roi_scale (Union[Sequence[float], float]) – specifies the expected scale of image size to crop. e.g. [0.3, 0.4, 0.5] or a number for all dims. If its components have non-positive values, will use 1.0 instead, which means the input image size.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Intensity (Dict)

RandGaussianNoised

example of RandGaussianNoised
class monai.transforms.RandGaussianNoised(keys, prob=0.1, mean=0.0, std=0.1, dtype=<class 'numpy.float32'>, allow_missing_keys=False)[source]

Dictionary-based version monai.transforms.RandGaussianNoise. Add Gaussian noise to image. This transform assumes all the expected fields have same shape, if want to add different noise for every field, please use this transform separately.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • prob (float) – Probability to add Gaussian noise.

  • mean (float) – Mean or “centre” of the distribution.

  • std (float) – Standard deviation (spread) of distribution.

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandGaussianNoised

Returns

a Randomizable instance.

ShiftIntensityd

example of ShiftIntensityd
class monai.transforms.ShiftIntensityd(keys, offset, factor_key=None, meta_keys=None, meta_key_postfix='meta_dict', allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.ShiftIntensity.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • offset (float) – offset value to shift the intensity of image.

  • factor_key (Optional[str]) – if not None, use it as the key to extract a value from the corresponding meta data dictionary of key at runtime, and multiply the offset to shift intensity. Usually, IntensityStatsd transform can pre-compute statistics of intensity values and store in the meta data. it also can be a sequence of strings, map to keys.

  • meta_keys (Union[Collection[Hashable], Hashable, None]) – explicitly indicate the key of the corresponding meta data dictionary. used to extract the factor value is factor_key is not None. for example, for data with key image, the metadata by default is in image_meta_dict. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by key_{meta_key_postfix}.

  • meta_key_postfix (str) – if meta_keys is None, use key_{postfix} to to fetch the meta data according to the key data, default is meta_dict, the meta data is a dictionary object. used to extract the factor value is factor_key is not None.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, offset, factor_key=None, meta_keys=None, meta_key_postfix='meta_dict', allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • offset (float) – offset value to shift the intensity of image.

  • factor_key (Optional[str]) – if not None, use it as the key to extract a value from the corresponding meta data dictionary of key at runtime, and multiply the offset to shift intensity. Usually, IntensityStatsd transform can pre-compute statistics of intensity values and store in the meta data. it also can be a sequence of strings, map to keys.

  • meta_keys (Union[Collection[Hashable], Hashable, None]) – explicitly indicate the key of the corresponding meta data dictionary. used to extract the factor value is factor_key is not None. for example, for data with key image, the metadata by default is in image_meta_dict. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by key_{meta_key_postfix}.

  • meta_key_postfix (str) – if meta_keys is None, use key_{postfix} to to fetch the meta data according to the key data, default is meta_dict, the meta data is a dictionary object. used to extract the factor value is factor_key is not None.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

RandShiftIntensityd

example of RandShiftIntensityd
class monai.transforms.RandShiftIntensityd(keys, offsets, factor_key=None, meta_keys=None, meta_key_postfix='meta_dict', prob=0.1, allow_missing_keys=False)[source]

Dictionary-based version monai.transforms.RandShiftIntensity.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • offsets (Union[Tuple[float, float], float]) – offset range to randomly shift. if single number, offset value is picked from (-offsets, offsets).

  • factor_key (Optional[str]) – if not None, use it as the key to extract a value from the corresponding meta data dictionary of key at runtime, and multiply the random offset to shift intensity. Usually, IntensityStatsd transform can pre-compute statistics of intensity values and store in the meta data. it also can be a sequence of strings, map to keys.

  • meta_keys (Union[Collection[Hashable], Hashable, None]) – explicitly indicate the key of the corresponding meta data dictionary. used to extract the factor value is factor_key is not None. for example, for data with key image, the metadata by default is in image_meta_dict. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by key_{meta_key_postfix}.

  • meta_key_postfix (str) – if meta_keys is None, use key_{postfix} to to fetch the meta data according to the key data, default is meta_dict, the meta data is a dictionary object. used to extract the factor value is factor_key is not None.

  • prob (float) – probability of rotating. (Default 0.1, with 10% probability it returns a rotated array.)

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

__init__(keys, offsets, factor_key=None, meta_keys=None, meta_key_postfix='meta_dict', prob=0.1, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • offsets (Union[Tuple[float, float], float]) – offset range to randomly shift. if single number, offset value is picked from (-offsets, offsets).

  • factor_key (Optional[str]) – if not None, use it as the key to extract a value from the corresponding meta data dictionary of key at runtime, and multiply the random offset to shift intensity. Usually, IntensityStatsd transform can pre-compute statistics of intensity values and store in the meta data. it also can be a sequence of strings, map to keys.

  • meta_keys (Union[Collection[Hashable], Hashable, None]) – explicitly indicate the key of the corresponding meta data dictionary. used to extract the factor value is factor_key is not None. for example, for data with key image, the metadata by default is in image_meta_dict. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by key_{meta_key_postfix}.

  • meta_key_postfix (str) – if meta_keys is None, use key_{postfix} to to fetch the meta data according to the key data, default is meta_dict, the meta data is a dictionary object. used to extract the factor value is factor_key is not None.

  • prob (float) – probability of rotating. (Default 0.1, with 10% probability it returns a rotated array.)

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandShiftIntensityd

Returns

a Randomizable instance.

StdShiftIntensityd

example of StdShiftIntensityd
class monai.transforms.StdShiftIntensityd(keys, factor, nonzero=False, channel_wise=False, dtype=<class 'numpy.float32'>, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.StdShiftIntensity.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • factor (float) – factor shift by v = v + factor * std(v).

  • nonzero (bool) – whether only count non-zero values.

  • channel_wise (bool) – if True, calculate on each channel separately. Please ensure that the first dimension represents the channel of the image if True.

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, factor, nonzero=False, channel_wise=False, dtype=<class 'numpy.float32'>, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • factor (float) – factor shift by v = v + factor * std(v).

  • nonzero (bool) – whether only count non-zero values.

  • channel_wise (bool) – if True, calculate on each channel separately. Please ensure that the first dimension represents the channel of the image if True.

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

RandStdShiftIntensityd

example of RandStdShiftIntensityd
class monai.transforms.RandStdShiftIntensityd(keys, factors, prob=0.1, nonzero=False, channel_wise=False, dtype=<class 'numpy.float32'>, allow_missing_keys=False)[source]

Dictionary-based version monai.transforms.RandStdShiftIntensity.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • factors (Union[Tuple[float, float], float]) – if tuple, the randomly picked range is (min(factors), max(factors)). If single number, the range is (-factors, factors).

  • prob (float) – probability of std shift.

  • nonzero (bool) – whether only count non-zero values.

  • channel_wise (bool) – if True, calculate on each channel separately.

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

__init__(keys, factors, prob=0.1, nonzero=False, channel_wise=False, dtype=<class 'numpy.float32'>, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • factors (Union[Tuple[float, float], float]) – if tuple, the randomly picked range is (min(factors), max(factors)). If single number, the range is (-factors, factors).

  • prob (float) – probability of std shift.

  • nonzero (bool) – whether only count non-zero values.

  • channel_wise (bool) – if True, calculate on each channel separately.

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandStdShiftIntensityd

Returns

a Randomizable instance.

RandBiasFieldd

example of RandBiasFieldd
class monai.transforms.RandBiasFieldd(keys, degree=3, coeff_range=(0.0, 0.1), dtype=<class 'numpy.float32'>, prob=0.1, allow_missing_keys=False)[source]

Dictionary-based version monai.transforms.RandBiasField.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • degree (int) – degree of freedom of the polynomials. The value should be no less than 1. Defaults to 3.

  • coeff_range (Tuple[float, float]) – range of the random coefficients. Defaults to (0.0, 0.1).

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

  • prob (float) – probability to do random bias field.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

__init__(keys, degree=3, coeff_range=(0.0, 0.1), dtype=<class 'numpy.float32'>, prob=0.1, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • degree (int) – degree of freedom of the polynomials. The value should be no less than 1. Defaults to 3.

  • coeff_range (Tuple[float, float]) – range of the random coefficients. Defaults to (0.0, 0.1).

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

  • prob (float) – probability to do random bias field.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandBiasFieldd

Returns

a Randomizable instance.

ScaleIntensityd

example of ScaleIntensityd
class monai.transforms.ScaleIntensityd(keys, minv=0.0, maxv=1.0, factor=None, channel_wise=False, dtype=<class 'numpy.float32'>, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.ScaleIntensity. Scale the intensity of input image to the given value range (minv, maxv). If minv and maxv not provided, use factor to scale image by v = v * (1 + factor).

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • minv (Optional[float]) – minimum value of output data.

  • maxv (Optional[float]) – maximum value of output data.

  • factor (Optional[float]) – factor scale by v = v * (1 + factor). In order to use this parameter, please set both minv and maxv into None.

  • channel_wise (bool) – if True, scale on each channel separately. Please ensure that the first dimension represents the channel of the image if True.

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, minv=0.0, maxv=1.0, factor=None, channel_wise=False, dtype=<class 'numpy.float32'>, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • minv (Optional[float]) – minimum value of output data.

  • maxv (Optional[float]) – maximum value of output data.

  • factor (Optional[float]) – factor scale by v = v * (1 + factor). In order to use this parameter, please set both minv and maxv into None.

  • channel_wise (bool) – if True, scale on each channel separately. Please ensure that the first dimension represents the channel of the image if True.

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

RandScaleIntensityd

example of RandScaleIntensityd
class monai.transforms.RandScaleIntensityd(keys, factors, prob=0.1, dtype=<class 'numpy.float32'>, allow_missing_keys=False)[source]

Dictionary-based version monai.transforms.RandScaleIntensity.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • factors (Union[Tuple[float, float], float]) – factor range to randomly scale by v = v * (1 + factor). if single number, factor value is picked from (-factors, factors).

  • prob (float) – probability of rotating. (Default 0.1, with 10% probability it returns a rotated array.)

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

__init__(keys, factors, prob=0.1, dtype=<class 'numpy.float32'>, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • factors (Union[Tuple[float, float], float]) – factor range to randomly scale by v = v * (1 + factor). if single number, factor value is picked from (-factors, factors).

  • prob (float) – probability of rotating. (Default 0.1, with 10% probability it returns a rotated array.)

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandScaleIntensityd

Returns

a Randomizable instance.

NormalizeIntensityd

example of NormalizeIntensityd
class monai.transforms.NormalizeIntensityd(keys, subtrahend=None, divisor=None, nonzero=False, channel_wise=False, dtype=<class 'numpy.float32'>, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.NormalizeIntensity. This transform can normalize only non-zero values or entire image, and can also calculate mean and std on each channel separately.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.MapTransform

  • subtrahend (Union[ndarray, Tensor, None]) – the amount to subtract by (usually the mean)

  • divisor (Union[ndarray, Tensor, None]) – the amount to divide by (usually the standard deviation)

  • nonzero (bool) – whether only normalize non-zero values.

  • channel_wise (bool) – if using calculated mean and std, calculate on each channel separately or calculate on the entire image directly.

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

ThresholdIntensityd

example of ThresholdIntensityd
class monai.transforms.ThresholdIntensityd(keys, threshold, above=True, cval=0.0, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.ThresholdIntensity.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.MapTransform

  • threshold (float) – the threshold to filter intensity values.

  • above (bool) – filter values above the threshold or below the threshold, default is True.

  • cval (float) – value to fill the remaining parts of the image, default is 0.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

ScaleIntensityRanged

example of ScaleIntensityRanged
class monai.transforms.ScaleIntensityRanged(keys, a_min, a_max, b_min=None, b_max=None, clip=False, dtype=<class 'numpy.float32'>, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.ScaleIntensityRange.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.MapTransform

  • a_min (float) – intensity original range min.

  • a_max (float) – intensity original range max.

  • b_min (Optional[float]) – intensity target range min.

  • b_max (Optional[float]) – intensity target range max.

  • clip (bool) – whether to perform clip after scaling.

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

GibbsNoised

example of GibbsNoised
class monai.transforms.GibbsNoised(keys, alpha=0.5, allow_missing_keys=False, as_tensor_output=True)[source]

Dictionary-based version of GibbsNoise.

The transform applies Gibbs noise to 2D/3D MRI images. Gibbs artifacts are one of the common type of type artifacts appearing in MRI scans.

For general information on Gibbs artifacts, please refer to: https://pubs.rsna.org/doi/full/10.1148/rg.313105115 https://pubs.rsna.org/doi/full/10.1148/radiographics.22.4.g02jl14949

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – ‘image’, ‘label’, or [‘image’, ‘label’] depending on which data you need to transform.

  • alpha (float) – Parametrizes the intensity of the Gibbs noise filter applied. Takes values in the interval [0,1] with alpha = 0 acting as the identity mapping.

  • allow_missing_keys (bool) – do not raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

RandGibbsNoised

example of RandGibbsNoised
class monai.transforms.RandGibbsNoised(keys, prob=0.1, alpha=(0.0, 1.0), allow_missing_keys=False, as_tensor_output=True)[source]

Dictionary-based version of RandGibbsNoise.

Naturalistic image augmentation via Gibbs artifacts. The transform randomly applies Gibbs noise to 2D/3D MRI images. Gibbs artifacts are one of the common type of type artifacts appearing in MRI scans.

The transform is applied to all the channels in the data.

For general information on Gibbs artifacts, please refer to: https://pubs.rsna.org/doi/full/10.1148/rg.313105115 https://pubs.rsna.org/doi/full/10.1148/radiographics.22.4.g02jl14949

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – ‘image’, ‘label’, or [‘image’, ‘label’] depending on which data you need to transform.

  • prob (float) – probability of applying the transform.

  • alpha (float, List[float]) – Parametrizes the intensity of the Gibbs noise filter applied. Takes values in the interval [0,1] with alpha = 0 acting as the identity mapping. If a length-2 list is given as [a,b] then the value of alpha will be sampled uniformly from the interval [a,b].

  • allow_missing_keys (bool) – do not raise exception if key is missing.

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandGibbsNoised

Returns

a Randomizable instance.

KSpaceSpikeNoised

example of KSpaceSpikeNoised
class monai.transforms.KSpaceSpikeNoised(keys, loc, k_intensity=None, allow_missing_keys=False, as_tensor_output=True)[source]

Dictionary-based wrapper of monai.transforms.KSpaceSpikeNoise.

Applies localized spikes in k-space at the given locations and intensities. Spike (Herringbone) artifact is a type of data acquisition artifact which may occur during MRI scans.

For general information on spike artifacts, please refer to:

AAPM/RSNA physics tutorial for residents: fundamental physics of MR imaging.

Body MRI artifacts in clinical practice: A physicist’s and radiologist’s perspective.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – “image”, “label”, or [“image”, “label”] depending on which data you need to transform.

  • loc (Union[Tuple, Sequence[Tuple]]) – spatial location for the spikes. For images with 3D spatial dimensions, the user can provide (C, X, Y, Z) to fix which channel C is affected, or (X, Y, Z) to place the same spike in all channels. For 2D cases, the user can provide (C, X, Y) or (X, Y).

  • k_intensity (Union[Sequence[float], float, None]) – value for the log-intensity of the k-space version of the image. If one location is passed to loc or the channel is not specified, then this argument should receive a float. If loc is given a sequence of locations, then this argument should receive a sequence of intensities. This value should be tested as it is data-dependent. The default values are the 2.5 the mean of the log-intensity for each channel.

  • allow_missing_keys (bool) – do not raise exception if key is missing.

Example

When working with 4D data, KSpaceSpikeNoised("image", loc = ((3,60,64,32), (64,60,32)), k_intensity = (13,14)) will place a spike at [3, 60, 64, 32] with log-intensity = 13, and one spike per channel located respectively at [: , 64, 60, 32] with log-intensity = 14.

__call__(data)[source]
Parameters

data (Mapping[Hashable, Union[ndarray, Tensor]]) – Expects image/label to have dimensions (C, H, W) or (C, H, W, D), where C is the channel.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

RandKSpaceSpikeNoised

example of RandKSpaceSpikeNoised
class monai.transforms.RandKSpaceSpikeNoised(keys, global_prob=1.0, prob=0.1, intensity_range=None, channel_wise=True, common_sampling=False, common_seed=42, allow_missing_keys=False, as_tensor_output=True)[source]

Dictionary-based version of monai.transforms.RandKSpaceSpikeNoise.

Naturalistic data augmentation via spike artifacts. The transform applies localized spikes in k-space.

For general information on spike artifacts, please refer to:

AAPM/RSNA physics tutorial for residents: fundamental physics of MR imaging.

Body MRI artifacts in clinical practice: A physicist’s and radiologist’s perspective.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – “image”, “label”, or [“image”, “label”] depending on which data you need to transform.

  • prob (float) – probability to add spike artifact to each item in the dictionary provided it is realized that the noise will be applied to the dictionary.

  • intensity_range (Optional[Sequence[Union[Sequence[float], float]]]) – pass a tuple (a, b) to sample the log-intensity from the interval (a, b) uniformly for all channels. Or pass sequence of intervals ((a0, b0), (a1, b1), …) to sample for each respective channel. In the second case, the number of 2-tuples must match the number of channels. Default ranges is (0.95x, 1.10x) where x is the mean log-intensity for each channel.

  • channel_wise (bool) – treat each channel independently. True by default.

  • allow_missing_keys (bool) – do not raise exception if key is missing.

Example

To apply k-space spikes randomly on the image only, with probability 0.5, and log-intensity sampled from the interval [13, 15] for each channel independently, one uses RandKSpaceSpikeNoised("image", prob=0.5, intensity_ranges=(13, 15), channel_wise=True).

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandKSpaceSpikeNoised

Returns

a Randomizable instance.

ScaleIntensityRangePercentilesd

example of ScaleIntensityRangePercentilesd
class monai.transforms.ScaleIntensityRangePercentilesd(keys, lower, upper, b_min, b_max, clip=False, relative=False, dtype=<class 'numpy.float32'>, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.ScaleIntensityRangePercentiles.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.MapTransform

  • lower (float) – lower percentile.

  • upper (float) – upper percentile.

  • b_min (Optional[float]) – intensity target range min.

  • b_max (Optional[float]) – intensity target range max.

  • clip (bool) – whether to perform clip after scaling.

  • relative (bool) – whether to scale to the corresponding percentiles of [b_min, b_max]

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

AdjustContrastd

example of AdjustContrastd
class monai.transforms.AdjustContrastd(keys, gamma, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.AdjustContrast. Changes image intensity by gamma. Each pixel/voxel intensity is updated as:

x = ((x - min) / intensity_range) ^ gamma * intensity_range + min

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.MapTransform

  • gamma (float) – gamma value to adjust the contrast as function.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

RandAdjustContrastd

example of RandAdjustContrastd
class monai.transforms.RandAdjustContrastd(keys, prob=0.1, gamma=(0.5, 4.5), allow_missing_keys=False)[source]

Dictionary-based version monai.transforms.RandAdjustContrast. Randomly changes image intensity by gamma. Each pixel/voxel intensity is updated as:

x = ((x - min) / intensity_range) ^ gamma * intensity_range + min

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.MapTransform

  • prob (float) – Probability of adjustment.

  • gamma (Union[Tuple[float, float], float]) – Range of gamma values. If single number, value is picked from (0.5, gamma), default is (0.5, 4.5).

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandAdjustContrastd

Returns

a Randomizable instance.

MaskIntensityd

example of MaskIntensityd
class monai.transforms.MaskIntensityd(keys, mask_data=None, mask_key=None, select_fn=<function is_positive>, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.MaskIntensity.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • mask_data (Union[ndarray, Tensor, None]) – if mask data is single channel, apply to every channel of input image. if multiple channels, the channel number must match input data. the intensity values of input image corresponding to the selected values in the mask data will keep the original value, others will be set to 0. if None, will extract the mask data from input data based on mask_key.

  • mask_key (Optional[str]) – the key to extract mask data from input dictionary, only works when mask_data is None.

  • select_fn (Callable) – function to select valid values of the mask_data, default is to select values > 0.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

GaussianSmoothd

example of GaussianSmoothd
class monai.transforms.GaussianSmoothd(keys, sigma, approx='erf', allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.GaussianSmooth.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • sigma (Union[Sequence[float], float]) – if a list of values, must match the count of spatial dimensions of input data, and apply every value in the list to 1 spatial dimension. if only 1 value provided, use it for all spatial dimensions.

  • approx (str) – discrete Gaussian kernel type, available options are “erf”, “sampled”, and “scalespace”. see also monai.networks.layers.GaussianFilter().

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

RandGaussianSmoothd

example of RandGaussianSmoothd
class monai.transforms.RandGaussianSmoothd(keys, sigma_x=(0.25, 1.5), sigma_y=(0.25, 1.5), sigma_z=(0.25, 1.5), approx='erf', prob=0.1, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.GaussianSmooth.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • sigma_x (Tuple[float, float]) – randomly select sigma value for the first spatial dimension.

  • sigma_y (Tuple[float, float]) – randomly select sigma value for the second spatial dimension if have.

  • sigma_z (Tuple[float, float]) – randomly select sigma value for the third spatial dimension if have.

  • approx (str) – discrete Gaussian kernel type, available options are “erf”, “sampled”, and “scalespace”. see also monai.networks.layers.GaussianFilter().

  • prob (float) – probability of Gaussian smooth.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandGaussianSmoothd

Returns

a Randomizable instance.

GaussianSharpend

example of GaussianSharpend
class monai.transforms.GaussianSharpend(keys, sigma1=3.0, sigma2=1.0, alpha=30.0, approx='erf', allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.GaussianSharpen.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • sigma1 (Union[Sequence[float], float]) – sigma parameter for the first gaussian kernel. if a list of values, must match the count of spatial dimensions of input data, and apply every value in the list to 1 spatial dimension. if only 1 value provided, use it for all spatial dimensions.

  • sigma2 (Union[Sequence[float], float]) – sigma parameter for the second gaussian kernel. if a list of values, must match the count of spatial dimensions of input data, and apply every value in the list to 1 spatial dimension. if only 1 value provided, use it for all spatial dimensions.

  • alpha (float) – weight parameter to compute the final result.

  • approx (str) – discrete Gaussian kernel type, available options are “erf”, “sampled”, and “scalespace”. see also monai.networks.layers.GaussianFilter().

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

RandGaussianSharpend

example of RandGaussianSharpend
class monai.transforms.RandGaussianSharpend(keys, sigma1_x=(0.5, 1.0), sigma1_y=(0.5, 1.0), sigma1_z=(0.5, 1.0), sigma2_x=0.5, sigma2_y=0.5, sigma2_z=0.5, alpha=(10.0, 30.0), approx='erf', prob=0.1, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.GaussianSharpen.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • sigma1_x (Tuple[float, float]) – randomly select sigma value for the first spatial dimension of first gaussian kernel.

  • sigma1_y (Tuple[float, float]) – randomly select sigma value for the second spatial dimension(if have) of first gaussian kernel.

  • sigma1_z (Tuple[float, float]) – randomly select sigma value for the third spatial dimension(if have) of first gaussian kernel.

  • sigma2_x (Union[Tuple[float, float], float]) – randomly select sigma value for the first spatial dimension of second gaussian kernel. if only 1 value X provided, it must be smaller than sigma1_x and randomly select from [X, sigma1_x].

  • sigma2_y (Union[Tuple[float, float], float]) – randomly select sigma value for the second spatial dimension(if have) of second gaussian kernel. if only 1 value Y provided, it must be smaller than sigma1_y and randomly select from [Y, sigma1_y].

  • sigma2_z (Union[Tuple[float, float], float]) – randomly select sigma value for the third spatial dimension(if have) of second gaussian kernel. if only 1 value Z provided, it must be smaller than sigma1_z and randomly select from [Z, sigma1_z].

  • alpha (Tuple[float, float]) – randomly select weight parameter to compute the final result.

  • approx (str) – discrete Gaussian kernel type, available options are “erf”, “sampled”, and “scalespace”. see also monai.networks.layers.GaussianFilter().

  • prob (float) – probability of Gaussian sharpen.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandGaussianSharpend

Returns

a Randomizable instance.

RandHistogramShiftd

example of RandHistogramShiftd
class monai.transforms.RandHistogramShiftd(keys, num_control_points=10, prob=0.1, allow_missing_keys=False)[source]

Dictionary-based version monai.transforms.RandHistogramShift. Apply random nonlinear transform the the image’s intensity histogram.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.MapTransform

  • num_control_points (Union[Tuple[int, int], int]) – number of control points governing the nonlinear intensity mapping. a smaller number of control points allows for larger intensity shifts. if two values provided, number of control points selecting from range (min_value, max_value).

  • prob (float) – probability of histogram shift.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandHistogramShiftd

Returns

a Randomizable instance.

RandCoarseDropoutd

example of RandCoarseDropoutd
class monai.transforms.RandCoarseDropoutd(keys, holes, spatial_size, dropout_holes=True, fill_value=None, max_holes=None, max_spatial_size=None, prob=0.1, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.RandCoarseDropout. Expect all the data specified by keys have same spatial shape and will randomly dropout the same regions for every key, if want to dropout differently for every key, please use this transform separately.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • holes (int) – number of regions to dropout, if max_holes is not None, use this arg as the minimum number to randomly select the expected number of regions.

  • spatial_size (Union[Sequence[int], int]) – spatial size of the regions to dropout, if max_spatial_size is not None, use this arg as the minimum spatial size to randomly select size for every region. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of input img size. For example, spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • dropout_holes (bool) – if True, dropout the regions of holes and fill value, if False, keep the holes and dropout the outside and fill value. default to True.

  • fill_value (Union[Tuple[float, float], float, None]) – target value to fill the dropout regions, if providing a number, will use it as constant value to fill all the regions. if providing a tuple for the min and max, will randomly select value for every pixel / voxel from the range [min, max). if None, will compute the min and max value of input image then randomly select value to fill, default to None.

  • max_holes (Optional[int]) – if not None, define the maximum number to randomly select the expected number of regions.

  • max_spatial_size (Union[Sequence[int], int, None]) – if not None, define the maximum spatial size to randomly select size for every region. if some components of the max_spatial_size are non-positive values, the transform will use the corresponding components of input img size. For example, max_spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • prob (float) – probability of applying the transform.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandCoarseDropoutd

Returns

a Randomizable instance.

RandCoarseShuffled

example of RandCoarseShuffled
class monai.transforms.RandCoarseShuffled(keys, holes, spatial_size, max_holes=None, max_spatial_size=None, prob=0.1, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.RandCoarseShuffle. Expect all the data specified by keys have same spatial shape and will randomly dropout the same regions for every key, if want to shuffle different regions for every key, please use this transform separately.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • holes (int) – number of regions to dropout, if max_holes is not None, use this arg as the minimum number to randomly select the expected number of regions.

  • spatial_size (Union[Sequence[int], int]) – spatial size of the regions to dropout, if max_spatial_size is not None, use this arg as the minimum spatial size to randomly select size for every region. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of input img size. For example, spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • max_holes (Optional[int]) – if not None, define the maximum number to randomly select the expected number of regions.

  • max_spatial_size (Union[Sequence[int], int, None]) – if not None, define the maximum spatial size to randomly select size for every region. if some components of the max_spatial_size are non-positive values, the transform will use the corresponding components of input img size. For example, max_spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • prob (float) – probability of applying the transform.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandCoarseShuffled

Returns

a Randomizable instance.

HistogramNormalized

example of HistogramNormalized
class monai.transforms.HistogramNormalized(keys, num_bins=256, min=0, max=255, mask=None, mask_key=None, dtype=<class 'numpy.float32'>, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.HistogramNormalize.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • num_bins (int) – number of the bins to use in histogram, default to 256. for more details: https://numpy.org/doc/stable/reference/generated/numpy.histogram.html.

  • min (int) – the min value to normalize input image, default to 255.

  • max (int) – the max value to normalize input image, default to 255.

  • mask (Union[ndarray, Tensor, None]) – if provided, must be ndarray of bools or 0s and 1s, and same shape as image. only points at which mask==True are used for the equalization. can also provide the mask by mask_key at runtime.

  • mask_key (Optional[str]) – if mask is None, will try to get the mask with mask_key.

  • dtype (Union[dtype, type, None]) – output data type, if None, same as input image. defaults to float32.

  • allow_missing_keys (bool) – do not raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

IO (Dict)

LoadImaged

class monai.transforms.LoadImaged(keys, reader=None, dtype=<class 'numpy.float32'>, meta_keys=None, meta_key_postfix='meta_dict', overwriting=False, image_only=False, allow_missing_keys=False, *args, **kwargs)[source]

Dictionary-based wrapper of monai.transforms.LoadImage, It can load both image data and metadata. When loading a list of files in one key, the arrays will be stacked and a new dimension will be added as the first dimension In this case, the meta data of the first image will be used to represent the stacked result. The affine transform of all the stacked images should be same. The output metadata field will be created as meta_keys or key_{meta_key_postfix}.

If reader is not specified, this class automatically chooses readers based on the supported suffixes and in the following order:

  • User-specified reader at runtime when calling this loader.

  • User-specified reader in the constructor of LoadImage.

  • Readers from the last to the first in the registered list.

  • Current default readers: (nii, nii.gz -> NibabelReader), (png, jpg, bmp -> PILReader), (npz, npy -> NumpyReader), (others -> ITKReader).

Note

  • If reader is specified, the loader will attempt to use the specified readers and the default supported readers. This might introduce overheads when handling the exceptions of trying the incompatible loaders. In this case, it is therefore recommended to set the most appropriate reader as the last item of the reader parameter.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • reader (Union[ImageReader, str, None]) – register reader to load image file and meta data, if None, still can register readers at runtime or use the default readers. If a string of reader name provided, will construct a reader object with the *args and **kwargs parameters, supported reader name: “NibabelReader”, “PILReader”, “ITKReader”, “NumpyReader”.

  • dtype (Union[dtype, type, None]) – if not None convert the loaded image data to this data type.

  • meta_keys (Union[Collection[Hashable], Hashable, None]) – explicitly indicate the key to store the corresponding meta data dictionary. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by key_{meta_key_postfix}.

  • meta_key_postfix (str) – if meta_keys is None, use key_{postfix} to store the metadata of the nifti image, default is meta_dict. The meta data is a dictionary object. For example, load nifti file for image, store the metadata into image_meta_dict.

  • overwriting (bool) – whether allow to overwrite existing meta data of same key. default is False, which will raise exception if encountering existing key.

  • image_only (bool) – if True return dictionary containing just only the image volumes, otherwise return dictionary containing image data array and header dict per input key.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • args – additional parameters for reader if providing a reader name.

  • kwargs – additional parameters for reader if providing a reader name.

__call__(data, reader=None)[source]
Raises

KeyError – When not self.overwriting and key already exists in data.

__init__(keys, reader=None, dtype=<class 'numpy.float32'>, meta_keys=None, meta_key_postfix='meta_dict', overwriting=False, image_only=False, allow_missing_keys=False, *args, **kwargs)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • reader (Union[ImageReader, str, None]) – register reader to load image file and meta data, if None, still can register readers at runtime or use the default readers. If a string of reader name provided, will construct a reader object with the *args and **kwargs parameters, supported reader name: “NibabelReader”, “PILReader”, “ITKReader”, “NumpyReader”.

  • dtype (Union[dtype, type, None]) – if not None convert the loaded image data to this data type.

  • meta_keys (Union[Collection[Hashable], Hashable, None]) – explicitly indicate the key to store the corresponding meta data dictionary. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by key_{meta_key_postfix}.

  • meta_key_postfix (str) – if meta_keys is None, use key_{postfix} to store the metadata of the nifti image, default is meta_dict. The meta data is a dictionary object. For example, load nifti file for image, store the metadata into image_meta_dict.

  • overwriting (bool) – whether allow to overwrite existing meta data of same key. default is False, which will raise exception if encountering existing key.

  • image_only (bool) – if True return dictionary containing just only the image volumes, otherwise return dictionary containing image data array and header dict per input key.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • args – additional parameters for reader if providing a reader name.

  • kwargs – additional parameters for reader if providing a reader name.

register(reader)[source]

Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

SaveImaged

class monai.transforms.SaveImaged(keys, meta_keys=None, meta_key_postfix='meta_dict', output_dir='./', output_postfix='trans', output_ext='.nii.gz', resample=True, mode='nearest', padding_mode=GridSamplePadMode.BORDER, scale=None, dtype=<class 'numpy.float64'>, output_dtype=<class 'numpy.float32'>, allow_missing_keys=False, squeeze_end_dims=True, data_root_dir='', separate_folder=True, print_log=True)[source]

Dictionary-based wrapper of monai.transforms.SaveImage.

Note

Image should be channel-first shape: [C,H,W,[D]]. If the data is a patch of big image, will append the patch index to filename.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • meta_keys (Union[Collection[Hashable], Hashable, None]) – explicitly indicate the key of the corresponding meta data dictionary. for example, for data with key image, the metadata by default is in image_meta_dict. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by key_{meta_key_postfix}.

  • meta_key_postfix (str) – if meta_keys is None and key_{postfix} was used to store the metadata in LoadImaged. need the key to extract metadata to save images, default is meta_dict. for example, for data with key image, the metadata by default is in image_meta_dict. the meta data is a dictionary object which contains: filename, affine, original_shape, etc. if no corresponding metadata, set to None.

  • output_dir (Union[Path, str]) – output image directory.

  • output_postfix (str) – a string appended to all output file names, default to trans.

  • output_ext (str) – output file extension name, available extensions: .nii.gz, .nii, .png.

  • resample (bool) – whether to resample before saving the data array. if saving PNG format image, based on the spatial_shape from metadata. if saving NIfTI format image, based on the original_affine from metadata.

  • mode (Union[GridSampleMode, InterpolateMode, str]) –

    This option is used when resample = True. Defaults to "nearest".

  • padding_mode (Union[GridSamplePadMode, str]) –

    This option is used when resample = True. Defaults to "border".

  • scale (Optional[int]) – {255, 65535} postprocess data by clipping to [0, 1] and scaling [0, 255] (uint8) or [0, 65535] (uint16). Default is None to disable scaling. it’s used for PNG format only.

  • dtype (Union[dtype, type, None]) – data type during resampling computation. Defaults to np.float64 for best precision. if None, use the data type of input data. To be compatible with other modules, the output data type is always np.float32. it’s used for NIfTI format only.

  • output_dtype (Union[dtype, type, None]) – data type for saving data. Defaults to np.float32. it’s used for NIfTI format only.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • squeeze_end_dims (bool) – if True, any trailing singleton dimensions will be removed (after the channel has been moved to the end). So if input is (C,H,W,D), this will be altered to (H,W,D,C), and then if C==1, it will be saved as (H,W,D). If D also ==1, it will be saved as (H,W). If false, image will always be saved as (H,W,D,C). it’s used for NIfTI format only.

  • data_root_dir (str) – if not empty, it specifies the beginning parts of the input file’s absolute path. it’s used to compute input_file_rel_path, the relative path to the file from data_root_dir to preserve folder structure when saving in case there are files in different folders with the same file names. for example: input_file_name: /foo/bar/test1/image.nii, output_postfix: seg output_ext: nii.gz output_dir: /output, data_root_dir: /foo/bar, output will be: /output/test1/image/image_seg.nii.gz

  • separate_folder (bool) – whether to save every file in a separate folder, for example: if input filename is image.nii, postfix is seg and folder_path is output, if True, save as: output/image/image_seg.nii, if False, save as output/image_seg.nii. default to True.

  • print_log (bool) – whether to print log about the saved file path, etc. default to True.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Returns

An updated dictionary version of data by applying the transform.

Post-processing (Dict)

Activationsd

class monai.transforms.Activationsd(keys, sigmoid=False, softmax=False, other=None, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.AddActivations. Add activation layers to the input data specified by keys.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to model output and label. See also: monai.transforms.compose.MapTransform

  • sigmoid (Union[Sequence[bool], bool]) – whether to execute sigmoid function on model output before transform. it also can be a sequence of bool, each element corresponds to a key in keys.

  • softmax (Union[Sequence[bool], bool]) – whether to execute softmax function on model output before transform. it also can be a sequence of bool, each element corresponds to a key in keys.

  • other (Union[Sequence[Callable], Callable, None]) – callable function to execute other activation layers, for example: other = torch.tanh. it also can be a sequence of Callable, each element corresponds to a key in keys.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, sigmoid=False, softmax=False, other=None, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to model output and label. See also: monai.transforms.compose.MapTransform

  • sigmoid (Union[Sequence[bool], bool]) – whether to execute sigmoid function on model output before transform. it also can be a sequence of bool, each element corresponds to a key in keys.

  • softmax (Union[Sequence[bool], bool]) – whether to execute softmax function on model output before transform. it also can be a sequence of bool, each element corresponds to a key in keys.

  • other (Union[Sequence[Callable], Callable, None]) – callable function to execute other activation layers, for example: other = torch.tanh. it also can be a sequence of Callable, each element corresponds to a key in keys.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

AsDiscreted

example of AsDiscreted
class monai.transforms.AsDiscreted(keys, argmax=False, to_onehot=None, threshold=None, rounding=None, allow_missing_keys=False, n_classes=None, num_classes=None, logit_thresh=0.5, threshold_values=False)[source]

Dictionary-based wrapper of monai.transforms.AsDiscrete.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to model output and label. See also: monai.transforms.compose.MapTransform

  • argmax (Union[Sequence[bool], bool]) – whether to execute argmax function on input data before transform. it also can be a sequence of bool, each element corresponds to a key in keys.

  • to_onehot (Union[Sequence[Optional[int]], int, None]) – if not None, convert input data into the one-hot format with specified number of classes. defaults to None. it also can be a sequence, each element corresponds to a key in keys.

  • threshold (Union[Sequence[Optional[float]], float, None]) – if not None, threshold the float values to int number 0 or 1 with specified theashold value. defaults to None. it also can be a sequence, each element corresponds to a key in keys.

  • rounding (Union[Sequence[Optional[str]], str, None]) – if not None, round the data according to the specified option, available options: [“torchrounding”]. it also can be a sequence of str or None, each element corresponds to a key in keys.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

Deprecated since version 0.6.0: n_classes is deprecated, use to_onehot instead.

Deprecated since version 0.7.0: num_classes is deprecated, use to_onehot instead. logit_thresh is deprecated, use threshold instead. threshold_values is deprecated, use threshold instead.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, argmax=False, to_onehot=None, threshold=None, rounding=None, allow_missing_keys=False, n_classes=None, num_classes=None, logit_thresh=0.5, threshold_values=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to model output and label. See also: monai.transforms.compose.MapTransform

  • argmax (Union[Sequence[bool], bool]) – whether to execute argmax function on input data before transform. it also can be a sequence of bool, each element corresponds to a key in keys.

  • to_onehot (Union[Sequence[Optional[int]], int, None]) – if not None, convert input data into the one-hot format with specified number of classes. defaults to None. it also can be a sequence, each element corresponds to a key in keys.

  • threshold (Union[Sequence[Optional[float]], float, None]) – if not None, threshold the float values to int number 0 or 1 with specified theashold value. defaults to None. it also can be a sequence, each element corresponds to a key in keys.

  • rounding (Union[Sequence[Optional[str]], str, None]) – if not None, round the data according to the specified option, available options: [“torchrounding”]. it also can be a sequence of str or None, each element corresponds to a key in keys.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

Deprecated since version 0.6.0: n_classes is deprecated, use to_onehot instead.

Deprecated since version 0.7.0: num_classes is deprecated, use to_onehot instead. logit_thresh is deprecated, use threshold instead. threshold_values is deprecated, use threshold instead.

KeepLargestConnectedComponentd

example of KeepLargestConnectedComponentd
class monai.transforms.KeepLargestConnectedComponentd(keys, applied_labels, independent=True, connectivity=None, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.KeepLargestConnectedComponent.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • applied_labels (Union[Sequence[int], int]) – Labels for applying the connected component on. If only one channel. The pixel whose value is not in this list will remain unchanged. If the data is in one-hot format, this is the channel indices to apply transform.

  • independent (bool) – whether to treat applied_labels as a union of foreground labels. If True, the connected component analysis will be performed on each foreground label independently and return the intersection of the largest components. If False, the analysis will be performed on the union of foreground labels. default is True.

  • connectivity (Optional[int]) – Maximum number of orthogonal hops to consider a pixel/voxel as a neighbor. Accepted values are ranging from 1 to input.ndim. If None, a full connectivity of input.ndim is used.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, applied_labels, independent=True, connectivity=None, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • applied_labels (Union[Sequence[int], int]) – Labels for applying the connected component on. If only one channel. The pixel whose value is not in this list will remain unchanged. If the data is in one-hot format, this is the channel indices to apply transform.

  • independent (bool) – whether to treat applied_labels as a union of foreground labels. If True, the connected component analysis will be performed on each foreground label independently and return the intersection of the largest components. If False, the analysis will be performed on the union of foreground labels. default is True.

  • connectivity (Optional[int]) – Maximum number of orthogonal hops to consider a pixel/voxel as a neighbor. Accepted values are ranging from 1 to input.ndim. If None, a full connectivity of input.ndim is used.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

LabelFilterd

example of LabelFilterd
class monai.transforms.LabelFilterd(keys, applied_labels, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.LabelFilter.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • applied_labels (Union[Sequence[int], int]) – Label(s) to filter on.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, applied_labels, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • applied_labels (Union[Sequence[int], int]) – Label(s) to filter on.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

FillHolesd

class monai.transforms.FillHolesd(keys, applied_labels=None, connectivity=None, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.FillHoles.

Initialize the connectivity and limit the labels for which holes are filled.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • applied_labels (Optional[Union[Iterable[int], int]], optional) – Labels for which to fill holes. Defaults to None, that is filling holes for all labels.

  • connectivity (int, optional) – Maximum number of orthogonal hops to consider a pixel/voxel as a neighbor. Accepted values are ranging from 1 to input.ndim. Defaults to a full connectivity of input.ndim.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, applied_labels=None, connectivity=None, allow_missing_keys=False)[source]

Initialize the connectivity and limit the labels for which holes are filled.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • applied_labels (Optional[Union[Iterable[int], int]], optional) – Labels for which to fill holes. Defaults to None, that is filling holes for all labels.

  • connectivity (int, optional) – Maximum number of orthogonal hops to consider a pixel/voxel as a neighbor. Accepted values are ranging from 1 to input.ndim. Defaults to a full connectivity of input.ndim.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

LabelToContourd

example of LabelToContourd
class monai.transforms.LabelToContourd(keys, kernel_type='Laplace', allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.LabelToContour.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • kernel_type (str) – the method applied to do edge detection, default is “Laplace”.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, kernel_type='Laplace', allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • kernel_type (str) – the method applied to do edge detection, default is “Laplace”.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

Ensembled

class monai.transforms.Ensembled(keys, ensemble, output_key=None, allow_missing_keys=False)[source]

Base class of dictionary-based ensemble transforms.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be stack and execute ensemble. if only 1 key provided, suppose it’s a PyTorch Tensor with data stacked on dimension E.

  • output_key (Optional[str]) – the key to store ensemble result in the dictionary.

  • ensemble (Callable[[Union[Sequence[Union[ndarray, Tensor]], ndarray, Tensor]], Union[ndarray, Tensor]]) – callable method to execute ensemble on specified data. if only 1 key provided in keys, output_key can be None and use keys as default.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

Raises
  • TypeError – When ensemble is not callable.

  • ValueError – When len(keys) > 1 and output_key=None. Incompatible values.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, ensemble, output_key=None, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be stack and execute ensemble. if only 1 key provided, suppose it’s a PyTorch Tensor with data stacked on dimension E.

  • output_key (Optional[str]) – the key to store ensemble result in the dictionary.

  • ensemble (Callable[[Union[Sequence[Union[ndarray, Tensor]], ndarray, Tensor]], Union[ndarray, Tensor]]) – callable method to execute ensemble on specified data. if only 1 key provided in keys, output_key can be None and use keys as default.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

Raises
  • TypeError – When ensemble is not callable.

  • ValueError – When len(keys) > 1 and output_key=None. Incompatible values.

MeanEnsembled

class monai.transforms.MeanEnsembled(keys, output_key=None, weights=None)[source]

Dictionary-based wrapper of monai.transforms.MeanEnsemble.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be stack and execute ensemble. if only 1 key provided, suppose it’s a PyTorch Tensor with data stacked on dimension E.

  • output_key (Optional[str]) – the key to store ensemble result in the dictionary. if only 1 key provided in keys, output_key can be None and use keys as default.

  • weights (Union[Sequence[float], ndarray, Tensor, None]) – can be a list or tuple of numbers for input data with shape: [E, C, H, W[, D]]. or a Numpy ndarray or a PyTorch Tensor data. the weights will be added to input data from highest dimension, for example: 1. if the weights only has 1 dimension, it will be added to the E dimension of input data. 2. if the weights has 2 dimensions, it will be added to E and C dimensions. it’s a typical practice to add weights for different classes: to ensemble 3 segmentation model outputs, every output has 4 channels(classes), so the input data shape can be: [3, 4, H, W, D]. and add different weights for different classes, so the weights shape can be: [3, 4]. for example: weights = [[1, 2, 3, 4], [4, 3, 2, 1], [1, 1, 1, 1]].

__init__(keys, output_key=None, weights=None)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be stack and execute ensemble. if only 1 key provided, suppose it’s a PyTorch Tensor with data stacked on dimension E.

  • output_key (Optional[str]) – the key to store ensemble result in the dictionary. if only 1 key provided in keys, output_key can be None and use keys as default.

  • weights (Union[Sequence[float], ndarray, Tensor, None]) – can be a list or tuple of numbers for input data with shape: [E, C, H, W[, D]]. or a Numpy ndarray or a PyTorch Tensor data. the weights will be added to input data from highest dimension, for example: 1. if the weights only has 1 dimension, it will be added to the E dimension of input data. 2. if the weights has 2 dimensions, it will be added to E and C dimensions. it’s a typical practice to add weights for different classes: to ensemble 3 segmentation model outputs, every output has 4 channels(classes), so the input data shape can be: [3, 4, H, W, D]. and add different weights for different classes, so the weights shape can be: [3, 4]. for example: weights = [[1, 2, 3, 4], [4, 3, 2, 1], [1, 1, 1, 1]].

VoteEnsembled

class monai.transforms.VoteEnsembled(keys, output_key=None, num_classes=None)[source]

Dictionary-based wrapper of monai.transforms.VoteEnsemble.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be stack and execute ensemble. if only 1 key provided, suppose it’s a PyTorch Tensor with data stacked on dimension E.

  • output_key (Optional[str]) – the key to store ensemble result in the dictionary. if only 1 key provided in keys, output_key can be None and use keys as default.

  • num_classes (Optional[int]) – if the input is single channel data instead of One-Hot, we can’t get class number from channel, need to explicitly specify the number of classes to vote.

__init__(keys, output_key=None, num_classes=None)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be stack and execute ensemble. if only 1 key provided, suppose it’s a PyTorch Tensor with data stacked on dimension E.

  • output_key (Optional[str]) – the key to store ensemble result in the dictionary. if only 1 key provided in keys, output_key can be None and use keys as default.

  • num_classes (Optional[int]) – if the input is single channel data instead of One-Hot, we can’t get class number from channel, need to explicitly specify the number of classes to vote.

Invertd

class monai.transforms.Invertd(keys, transform, orig_keys, meta_keys=None, orig_meta_keys=None, meta_key_postfix='meta_dict', nearest_interp=True, to_tensor=True, device='cpu', post_func=<function Invertd.<lambda>>, allow_missing_keys=False)[source]

Utility transform to automatically invert the previously applied transforms. When applying preprocessing transforms on a orig_key(like: image, label, etc.), we record the context information of applied transforms in a dictionary in the input data dictionary with the key “{orig_key}_transforms”. This transform will extract the transform context information of orig_keys then invert the transforms(got from this context information) on the keys data. Typical usage is to invert the preprocessing transforms(applied on input image) on the model pred data.

The output of the inverted data and metadata will be stored at keys and meta_keys respectively. To correctly invert the transforms, the information of the previously applied transforms should be available at orig_keys, and the original metadata at orig_meta_keys. (meta_key_postfix is an optional string to conveniently construct “meta_keys” and/or “orig_meta_keys”.)

A detailed usage example is available in the tutorial: https://github.com/Project-MONAI/tutorials/blob/master/3d_segmentation/torch/unet_inference_dict.py

Note

According to the collate_fn, this transform may return a list of Tensor without batch dim, thus some following transforms may not support a list of Tensor, and users can leverage the post_func arg for basic processing logic.

This transform needs to extract the context information of applied transforms and the meta data dictionary from the input data dictionary, then use some numpy arrays in them to computes the inverse logic, so please don’t move data[“{orig_key}_transforms”] and data[“{orig_meta_key}”] to GPU device.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – the key of expected data in the dict, invert transforms on it, in-place operation. it also can be a list of keys, will invert transform for each of them, like: [“pred”, “pred_class2”].

  • transform (InvertibleTransform) – the previous callable transform that applied on input data.

  • orig_keys (Union[Collection[Hashable], Hashable]) – the key of the original input data in the dict. will get the applied transform information for this input data, then invert them for the expected data with keys. It can also be a list of keys, each matches to the keys data.

  • meta_keys (Union[Collection[Hashable], Hashable, None]) – explicitly indicate the key for the inverted meta data dictionary. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by {key}_{meta_key_postfix}.

  • orig_meta_keys (Union[Collection[Hashable], Hashable, None]) – the key of the meta data of original input data, will get the affine, data_shape, etc. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by {orig_key}_{meta_key_postfix}. meta data will also be inverted and stored in meta_keys.

  • meta_key_postfix (str) – if orig_meta_keys is None, use {orig_key}_{meta_key_postfix} to to fetch the meta data from dict, if meta_keys is None, use {key}_{meta_key_postfix}. default is meta_dict, the meta data is a dictionary object. For example, to handle orig_key image, read/write affine matrices from the metadata image_meta_dict dictionary’s affine field. the inverted meta dict will be stored with key: “{key}_{meta_key_postfix}”.

  • nearest_interp (Union[bool, Sequence[bool]]) – whether to use nearest interpolation mode when inverting the spatial transforms, default to True. If False, use the same interpolation mode as the original transform. it also can be a list of bool, each matches to the keys data.

  • to_tensor (Union[bool, Sequence[bool]]) – whether to convert the inverted data into PyTorch Tensor first, default to True. it also can be a list of bool, each matches to the keys data.

  • device (Union[str, device, Sequence[Union[str, device]]]) – if converted to Tensor, move the inverted results to target device before post_func, default to “cpu”, it also can be a list of string or torch.device, each matches to the keys data.

  • post_func (Union[Callable, Sequence[Callable]]) – post processing for the inverted data, should be a callable function. it also can be a list of callable, each matches to the keys data.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Any]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, transform, orig_keys, meta_keys=None, orig_meta_keys=None, meta_key_postfix='meta_dict', nearest_interp=True, to_tensor=True, device='cpu', post_func=<function Invertd.<lambda>>, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – the key of expected data in the dict, invert transforms on it, in-place operation. it also can be a list of keys, will invert transform for each of them, like: [“pred”, “pred_class2”].

  • transform (InvertibleTransform) – the previous callable transform that applied on input data.

  • orig_keys (Union[Collection[Hashable], Hashable]) – the key of the original input data in the dict. will get the applied transform information for this input data, then invert them for the expected data with keys. It can also be a list of keys, each matches to the keys data.

  • meta_keys (Union[Collection[Hashable], Hashable, None]) – explicitly indicate the key for the inverted meta data dictionary. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by {key}_{meta_key_postfix}.

  • orig_meta_keys (Union[Collection[Hashable], Hashable, None]) – the key of the meta data of original input data, will get the affine, data_shape, etc. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by {orig_key}_{meta_key_postfix}. meta data will also be inverted and stored in meta_keys.

  • meta_key_postfix (str) – if orig_meta_keys is None, use {orig_key}_{meta_key_postfix} to to fetch the meta data from dict, if meta_keys is None, use {key}_{meta_key_postfix}. default is meta_dict, the meta data is a dictionary object. For example, to handle orig_key image, read/write affine matrices from the metadata image_meta_dict dictionary’s affine field. the inverted meta dict will be stored with key: “{key}_{meta_key_postfix}”.

  • nearest_interp (Union[bool, Sequence[bool]]) – whether to use nearest interpolation mode when inverting the spatial transforms, default to True. If False, use the same interpolation mode as the original transform. it also can be a list of bool, each matches to the keys data.

  • to_tensor (Union[bool, Sequence[bool]]) – whether to convert the inverted data into PyTorch Tensor first, default to True. it also can be a list of bool, each matches to the keys data.

  • device (Union[str, device, Sequence[Union[str, device]]]) – if converted to Tensor, move the inverted results to target device before post_func, default to “cpu”, it also can be a list of string or torch.device, each matches to the keys data.

  • post_func (Union[Callable, Sequence[Callable]]) – post processing for the inverted data, should be a callable function. it also can be a list of callable, each matches to the keys data.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

SaveClassificationd

class monai.transforms.SaveClassificationd(keys, meta_keys=None, meta_key_postfix='meta_dict', saver=None, output_dir='./', filename='predictions.csv', overwrite=True, flush=True, allow_missing_keys=False)[source]

Save the classification results and meta data into CSV file or other storage.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to model output, this transform only supports 1 key. See also: monai.transforms.compose.MapTransform

  • meta_keys (Union[Collection[Hashable], Hashable, None]) – explicitly indicate the key of the corresponding meta data dictionary. for example, for data with key image, the metadata by default is in image_meta_dict. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by key_{meta_key_postfix}. will extract the filename of input image to save classification results.

  • meta_key_postfix (str) – key_{postfix} was used to store the metadata in LoadImaged. so need the key to extract the metadata of input image, like filename, etc. default is meta_dict. for example, for data with key image, the metadata by default is in image_meta_dict. the meta data is a dictionary object which contains: filename, original_shape, etc. this arg only works when meta_keys=None. if no corresponding metadata, set to None.

  • saver (Optional[CSVSaver]) – the saver instance to save classification results, if None, create a CSVSaver internally. the saver must provide save(data, meta_data) and finalize() APIs.

  • output_dir (Union[str, PathLike]) – if saver=None, specify the directory to save the CSV file.

  • filename (str) – if saver=None, specify the name of the saved CSV file.

  • overwrite (bool) – if saver=None, indicate whether to overwriting existing CSV file content, if True, will clear the file before saving. otherwise, will append new content to the CSV file.

  • flush (bool) – if saver=None, indicate whether to write the cache data to CSV file immediately in this transform and clear the cache. default to True. If False, may need user to call saver.finalize() manually or use ClassificationSaver handler.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, meta_keys=None, meta_key_postfix='meta_dict', saver=None, output_dir='./', filename='predictions.csv', overwrite=True, flush=True, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to model output, this transform only supports 1 key. See also: monai.transforms.compose.MapTransform

  • meta_keys (Union[Collection[Hashable], Hashable, None]) – explicitly indicate the key of the corresponding meta data dictionary. for example, for data with key image, the metadata by default is in image_meta_dict. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by key_{meta_key_postfix}. will extract the filename of input image to save classification results.

  • meta_key_postfix (str) – key_{postfix} was used to store the metadata in LoadImaged. so need the key to extract the metadata of input image, like filename, etc. default is meta_dict. for example, for data with key image, the metadata by default is in image_meta_dict. the meta data is a dictionary object which contains: filename, original_shape, etc. this arg only works when meta_keys=None. if no corresponding metadata, set to None.

  • saver (Optional[CSVSaver]) – the saver instance to save classification results, if None, create a CSVSaver internally. the saver must provide save(data, meta_data) and finalize() APIs.

  • output_dir (Union[str, PathLike]) – if saver=None, specify the directory to save the CSV file.

  • filename (str) – if saver=None, specify the name of the saved CSV file.

  • overwrite (bool) – if saver=None, indicate whether to overwriting existing CSV file content, if True, will clear the file before saving. otherwise, will append new content to the CSV file.

  • flush (bool) – if saver=None, indicate whether to write the cache data to CSV file immediately in this transform and clear the cache. default to True. If False, may need user to call saver.finalize() manually or use ClassificationSaver handler.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

get_saver()[source]

If want to write content into file, may need to call finalize of saver when epoch completed. Or users can also get the cache content from saver instead of writing into file.

Spatial (Dict)

Spacingd

example of Spacingd
class monai.transforms.Spacingd(keys, pixdim, diagonal=False, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.BORDER, align_corners=False, dtype=<class 'numpy.float64'>, meta_keys=None, meta_key_postfix='meta_dict', allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.Spacing.

This transform assumes the data dictionary has a key for the input data’s metadata and contains affine field. The key is formed by key_{meta_key_postfix}.

After resampling the input array, this transform will write the new affine to the affine field of metadata which is formed by key_{meta_key_postfix}.

Parameters
  • pixdim (Union[Sequence[float], float]) – output voxel spacing. if providing a single number, will use it for the first dimension. items of the pixdim sequence map to the spatial dimensions of input image, if length of pixdim sequence is longer than image spatial dimensions, will ignore the longer part, if shorter, will pad with 1.0. if the components of the pixdim are non-positive values, the transform will use the corresponding components of the original pixdim, which is computed from the affine matrix of input image.

  • diagonal (bool) –

    whether to resample the input to have a diagonal affine matrix. If True, the input data is resampled to the following affine:

    np.diag((pixdim_0, pixdim_1, pixdim_2, 1))
    

    This effectively resets the volume to the world coordinate system (RAS+ in nibabel). The original orientation, rotation, shearing are not preserved.

    If False, the axes orientation, orthogonal rotation and translations components from the original affine will be preserved in the target affine. This option will not flip/swap axes against the original ones.

  • mode (Union[Sequence[Union[GridSampleMode, str]], GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • padding_mode (Union[Sequence[Union[GridSamplePadMode, str]], GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "border". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • align_corners (Union[Sequence[bool], bool]) – Geometrically, we consider the pixels of the input as squares rather than points. See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of bool, each element corresponds to a key in keys.

  • dtype (Union[Sequence[Union[dtype, type, None]], dtype, type, None]) – data type for resampling computation. Defaults to np.float64 for best precision. If None, use the data type of input data. To be compatible with other modules, the output data type is always np.float32. It also can be a sequence of dtypes, each element corresponds to a key in keys.

  • meta_keys (Union[Collection[Hashable], Hashable, None]) – explicitly indicate the key of the corresponding meta data dictionary. for example, for data with key image, the metadata by default is in image_meta_dict. the meta data is a dictionary object which contains: filename, affine, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by key_{meta_key_postfix}.

  • meta_key_postfix (str) – if meta_keys=None, use key_{postfix} to to fetch the meta data according to the key data, default is meta_dict, the meta data is a dictionary object. For example, to handle key image, read/write affine matrices from the metadata image_meta_dict dictionary’s affine field.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

Raises

TypeError – When meta_key_postfix is not a str.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, pixdim, diagonal=False, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.BORDER, align_corners=False, dtype=<class 'numpy.float64'>, meta_keys=None, meta_key_postfix='meta_dict', allow_missing_keys=False)[source]
Parameters
  • pixdim (Union[Sequence[float], float]) – output voxel spacing. if providing a single number, will use it for the first dimension. items of the pixdim sequence map to the spatial dimensions of input image, if length of pixdim sequence is longer than image spatial dimensions, will ignore the longer part, if shorter, will pad with 1.0. if the components of the pixdim are non-positive values, the transform will use the corresponding components of the original pixdim, which is computed from the affine matrix of input image.

  • diagonal (bool) –

    whether to resample the input to have a diagonal affine matrix. If True, the input data is resampled to the following affine:

    np.diag((pixdim_0, pixdim_1, pixdim_2, 1))
    

    This effectively resets the volume to the world coordinate system (RAS+ in nibabel). The original orientation, rotation, shearing are not preserved.

    If False, the axes orientation, orthogonal rotation and translations components from the original affine will be preserved in the target affine. This option will not flip/swap axes against the original ones.

  • mode (Union[Sequence[Union[GridSampleMode, str]], GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • padding_mode (Union[Sequence[Union[GridSamplePadMode, str]], GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "border". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • align_corners (Union[Sequence[bool], bool]) – Geometrically, we consider the pixels of the input as squares rather than points. See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of bool, each element corresponds to a key in keys.

  • dtype (Union[Sequence[Union[dtype, type, None]], dtype, type, None]) – data type for resampling computation. Defaults to np.float64 for best precision. If None, use the data type of input data. To be compatible with other modules, the output data type is always np.float32. It also can be a sequence of dtypes, each element corresponds to a key in keys.

  • meta_keys (Union[Collection[Hashable], Hashable, None]) – explicitly indicate the key of the corresponding meta data dictionary. for example, for data with key image, the metadata by default is in image_meta_dict. the meta data is a dictionary object which contains: filename, affine, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by key_{meta_key_postfix}.

  • meta_key_postfix (str) – if meta_keys=None, use key_{postfix} to to fetch the meta data according to the key data, default is meta_dict, the meta data is a dictionary object. For example, to handle key image, read/write affine matrices from the metadata image_meta_dict dictionary’s affine field.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

Raises

TypeError – When meta_key_postfix is not a str.

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Orientationd

example of Orientationd
class monai.transforms.Orientationd(keys, axcodes=None, as_closest_canonical=False, labels=(('L', 'R'), ('P', 'A'), ('I', 'S')), meta_keys=None, meta_key_postfix='meta_dict', allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.Orientation.

This transform assumes the data dictionary has a key for the input data’s metadata and contains affine field. The key is formed by key_{meta_key_postfix}.

After reorienting the input array, this transform will write the new affine to the affine field of metadata which is formed by key_{meta_key_postfix}.

Parameters
  • axcodes (Optional[str]) – N elements sequence for spatial ND input’s orientation. e.g. axcodes=’RAS’ represents 3D orientation: (Left, Right), (Posterior, Anterior), (Inferior, Superior). default orientation labels options are: ‘L’ and ‘R’ for the first dimension, ‘P’ and ‘A’ for the second, ‘I’ and ‘S’ for the third.

  • as_closest_canonical (bool) – if True, load the image as closest to canonical axis format.

  • labels (Optional[Sequence[Tuple[str, str]]]) – optional, None or sequence of (2,) sequences (2,) sequences are labels for (beginning, end) of output axis. Defaults to (('L', 'R'), ('P', 'A'), ('I', 'S')).

  • meta_keys (Union[Collection[Hashable], Hashable, None]) – explicitly indicate the key of the corresponding meta data dictionary. for example, for data with key image, the metadata by default is in image_meta_dict. the meta data is a dictionary object which contains: filename, affine, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by key_{meta_key_postfix}.

  • meta_key_postfix (str) – if meta_keys is None, use key_{postfix} to to fetch the meta data according to the key data, default is meta_dict, the meta data is a dictionary object. For example, to handle key image, read/write affine matrices from the metadata image_meta_dict dictionary’s affine field.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

Raises

TypeError – When meta_key_postfix is not a str.

See also

nibabel.orientations.ornt2axcodes.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, axcodes=None, as_closest_canonical=False, labels=(('L', 'R'), ('P', 'A'), ('I', 'S')), meta_keys=None, meta_key_postfix='meta_dict', allow_missing_keys=False)[source]
Parameters
  • axcodes (Optional[str]) – N elements sequence for spatial ND input’s orientation. e.g. axcodes=’RAS’ represents 3D orientation: (Left, Right), (Posterior, Anterior), (Inferior, Superior). default orientation labels options are: ‘L’ and ‘R’ for the first dimension, ‘P’ and ‘A’ for the second, ‘I’ and ‘S’ for the third.

  • as_closest_canonical (bool) – if True, load the image as closest to canonical axis format.

  • labels (Optional[Sequence[Tuple[str, str]]]) – optional, None or sequence of (2,) sequences (2,) sequences are labels for (beginning, end) of output axis. Defaults to (('L', 'R'), ('P', 'A'), ('I', 'S')).

  • meta_keys (Union[Collection[Hashable], Hashable, None]) – explicitly indicate the key of the corresponding meta data dictionary. for example, for data with key image, the metadata by default is in image_meta_dict. the meta data is a dictionary object which contains: filename, affine, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by key_{meta_key_postfix}.

  • meta_key_postfix (str) – if meta_keys is None, use key_{postfix} to to fetch the meta data according to the key data, default is meta_dict, the meta data is a dictionary object. For example, to handle key image, read/write affine matrices from the metadata image_meta_dict dictionary’s affine field.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

Raises

TypeError – When meta_key_postfix is not a str.

See also

nibabel.orientations.ornt2axcodes.

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Flipd

example of Flipd
class monai.transforms.Flipd(keys, spatial_axis=None, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.Flip.

See numpy.flip for additional details. https://docs.scipy.org/doc/numpy/reference/generated/numpy.flip.html

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – Keys to pick data for transformation.

  • spatial_axis (Union[Sequence[int], int, None]) – Spatial axes along which to flip over. Default is None.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

RandFlipd

example of RandFlipd
class monai.transforms.RandFlipd(keys, prob=0.1, spatial_axis=None, allow_missing_keys=False)[source]

Dictionary-based version monai.transforms.RandFlip.

See numpy.flip for additional details. https://docs.scipy.org/doc/numpy/reference/generated/numpy.flip.html

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – Keys to pick data for transformation.

  • prob (float) – Probability of flipping.

  • spatial_axis (Union[Sequence[int], int, None]) – Spatial axes along which to flip over. Default is None.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandFlipd

Returns

a Randomizable instance.

RandAxisFlipd

example of RandAxisFlipd
class monai.transforms.RandAxisFlipd(keys, prob=0.1, allow_missing_keys=False)[source]

Dictionary-based version monai.transforms.RandAxisFlip.

See numpy.flip for additional details. https://docs.scipy.org/doc/numpy/reference/generated/numpy.flip.html

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – Keys to pick data for transformation.

  • prob (float) – Probability of flipping.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandAxisFlipd

Returns

a Randomizable instance.

Rotated

example of Rotated
class monai.transforms.Rotated(keys, angle, keep_size=True, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.BORDER, align_corners=False, dtype=<class 'numpy.float64'>, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.Rotate.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – Keys to pick data for transformation.

  • angle (Union[Sequence[float], float]) – Rotation angle(s) in radians.

  • keep_size (bool) – If it is False, the output shape is adapted so that the input array is contained completely in the output. If it is True, the output shape is the same as the input. Default is True.

  • mode (Union[Sequence[Union[GridSampleMode, str]], GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • padding_mode (Union[Sequence[Union[GridSamplePadMode, str]], GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "border". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • align_corners (Union[Sequence[bool], bool]) – Defaults to False. See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of bool, each element corresponds to a key in keys.

  • dtype (Union[Sequence[Union[dtype, type, None, dtype]], dtype, type, None, dtype]) – data type for resampling computation. Defaults to np.float64 for best precision. If None, use the data type of input data. To be compatible with other modules, the output data type is always np.float32. It also can be a sequence of dtype or None, each element corresponds to a key in keys.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

RandRotated

example of RandRotated
class monai.transforms.RandRotated(keys, range_x=0.0, range_y=0.0, range_z=0.0, prob=0.1, keep_size=True, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.BORDER, align_corners=False, dtype=<class 'numpy.float64'>, allow_missing_keys=False)[source]

Dictionary-based version monai.transforms.RandRotate Randomly rotates the input arrays.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – Keys to pick data for transformation.

  • range_x (Union[Tuple[float, float], float]) – Range of rotation angle in radians in the plane defined by the first and second axes. If single number, angle is uniformly sampled from (-range_x, range_x).

  • range_y (Union[Tuple[float, float], float]) – Range of rotation angle in radians in the plane defined by the first and third axes. If single number, angle is uniformly sampled from (-range_y, range_y).

  • range_z (Union[Tuple[float, float], float]) – Range of rotation angle in radians in the plane defined by the second and third axes. If single number, angle is uniformly sampled from (-range_z, range_z).

  • prob (float) – Probability of rotation.

  • keep_size (bool) – If it is False, the output shape is adapted so that the input array is contained completely in the output. If it is True, the output shape is the same as the input. Default is True.

  • mode (Union[Sequence[Union[GridSampleMode, str]], GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • padding_mode (Union[Sequence[Union[GridSamplePadMode, str]], GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "border". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • align_corners (Union[Sequence[bool], bool]) – Defaults to False. See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate It also can be a sequence of bool, each element corresponds to a key in keys.

  • dtype (Union[Sequence[Union[dtype, type, None, dtype]], dtype, type, None, dtype]) – data type for resampling computation. Defaults to np.float64 for best precision. If None, use the data type of input data. To be compatible with other modules, the output data type is always np.float32. It also can be a sequence of dtype or None, each element corresponds to a key in keys.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandRotated

Returns

a Randomizable instance.

Zoomd

example of Zoomd
class monai.transforms.Zoomd(keys, zoom, mode=InterpolateMode.AREA, padding_mode=NumpyPadMode.EDGE, align_corners=None, keep_size=True, allow_missing_keys=False, **kwargs)[source]

Dictionary-based wrapper of monai.transforms.Zoom.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – Keys to pick data for transformation.

  • zoom (Union[Sequence[float], float]) – The zoom factor along the spatial axes. If a float, zoom is the same for each spatial axis. If a sequence, zoom should contain one value for each spatial axis.

  • mode (Union[Sequence[Union[InterpolateMode, str]], InterpolateMode, str]) – {"nearest", "linear", "bilinear", "bicubic", "trilinear", "area"} The interpolation mode. Defaults to "area". See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate It also can be a sequence of string, each element corresponds to a key in keys.

  • padding_mode (Union[Sequence[Union[NumpyPadMode, PytorchPadMode, str]], NumpyPadMode, PytorchPadMode, str]) – available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate", "circular"}. One of the listed string values or a user supplied function. Defaults to "constant". The mode to pad data after zooming. See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html

  • align_corners (Union[Sequence[Optional[bool]], bool, None]) – This only has an effect when mode is ‘linear’, ‘bilinear’, ‘bicubic’ or ‘trilinear’. Default: None. See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate It also can be a sequence of bool or None, each element corresponds to a key in keys.

  • keep_size (bool) – Should keep original size (pad if needed), default is True.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • kwargs – other arguments for the np.pad or torch.pad function. note that np.pad treats channel dimension as the first dimension.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

RandZoomd

example of RandZoomd
class monai.transforms.RandZoomd(keys, prob=0.1, min_zoom=0.9, max_zoom=1.1, mode=InterpolateMode.AREA, padding_mode=NumpyPadMode.EDGE, align_corners=None, keep_size=True, allow_missing_keys=False, **kwargs)[source]

Dict-based version monai.transforms.RandZoom.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – Keys to pick data for transformation.

  • prob (float) – Probability of zooming.

  • min_zoom (Union[Sequence[float], float]) – Min zoom factor. Can be float or sequence same size as image. If a float, select a random factor from [min_zoom, max_zoom] then apply to all spatial dims to keep the original spatial shape ratio. If a sequence, min_zoom should contain one value for each spatial axis. If 2 values provided for 3D data, use the first value for both H & W dims to keep the same zoom ratio.

  • max_zoom (Union[Sequence[float], float]) – Max zoom factor. Can be float or sequence same size as image. If a float, select a random factor from [min_zoom, max_zoom] then apply to all spatial dims to keep the original spatial shape ratio. If a sequence, max_zoom should contain one value for each spatial axis. If 2 values provided for 3D data, use the first value for both H & W dims to keep the same zoom ratio.

  • mode (Union[Sequence[Union[InterpolateMode, str]], InterpolateMode, str]) – {"nearest", "linear", "bilinear", "bicubic", "trilinear", "area"} The interpolation mode. Defaults to "area". See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate It also can be a sequence of string, each element corresponds to a key in keys.

  • padding_mode (Union[Sequence[Union[NumpyPadMode, PytorchPadMode, str]], NumpyPadMode, PytorchPadMode, str]) – available modes for numpy array:{"constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty"} available modes for PyTorch Tensor: {"constant", "reflect", "replicate", "circular"}. One of the listed string values or a user supplied function. Defaults to "constant". The mode to pad data after zooming. See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html

  • align_corners (Union[Sequence[Optional[bool]], bool, None]) – This only has an effect when mode is ‘linear’, ‘bilinear’, ‘bicubic’ or ‘trilinear’. Default: None. See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate It also can be a sequence of bool or None, each element corresponds to a key in keys.

  • keep_size (bool) – Should keep original size (pad if needed), default is True.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • kwargs – other args for np.pad API, note that np.pad treats channel dimension as the first dimension. more details: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandZoomd

Returns

a Randomizable instance.

RandRotate90d

example of RandRotate90d
class monai.transforms.RandRotate90d(keys, prob=0.1, max_k=3, spatial_axes=(0, 1), allow_missing_keys=False)[source]

Dictionary-based version monai.transforms.RandRotate90. With probability prob, input arrays are rotated by 90 degrees in the plane specified by spatial_axes.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • prob (float) – probability of rotating. (Default 0.1, with 10% probability it returns a rotated array.)

  • max_k (int) – number of rotations will be sampled from np.random.randint(max_k) + 1. (Default 3)

  • spatial_axes (Tuple[int, int]) – 2 int numbers, defines the plane to rotate with 2 spatial axes. Default: (0, 1), this is the first two axis in spatial dimensions.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Mapping[Hashable, Union[ndarray, Tensor]]

__init__(keys, prob=0.1, max_k=3, spatial_axes=(0, 1), allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • prob (float) – probability of rotating. (Default 0.1, with 10% probability it returns a rotated array.)

  • max_k (int) – number of rotations will be sampled from np.random.randint(max_k) + 1. (Default 3)

  • spatial_axes (Tuple[int, int]) – 2 int numbers, defines the plane to rotate with 2 spatial axes. Default: (0, 1), this is the first two axis in spatial dimensions.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

randomize(data=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

Rotate90d

example of Rotate90d
class monai.transforms.Rotate90d(keys, k=1, spatial_axes=(0, 1), allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.Rotate90.

Parameters
  • k (int) – number of times to rotate by 90 degrees.

  • spatial_axes (Tuple[int, int]) – 2 int numbers, defines the plane to rotate with 2 spatial axes. Default: (0, 1), this is the first two axis in spatial dimensions.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, k=1, spatial_axes=(0, 1), allow_missing_keys=False)[source]
Parameters
  • k (int) – number of times to rotate by 90 degrees.

  • spatial_axes (Tuple[int, int]) – 2 int numbers, defines the plane to rotate with 2 spatial axes. Default: (0, 1), this is the first two axis in spatial dimensions.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Resized

example of Resized
class monai.transforms.Resized(keys, spatial_size, size_mode='all', mode=InterpolateMode.AREA, align_corners=None, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.Resize.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • spatial_size (Union[Sequence[int], int]) – expected shape of spatial dimensions after resize operation. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of img size. For example, spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • size_mode (str) – should be “all” or “longest”, if “all”, will use spatial_size for all the spatial dims, if “longest”, rescale the image so that only the longest side is equal to specified spatial_size, which must be an int number in this case, keeping the aspect ratio of the initial image, refer to: https://albumentations.ai/docs/api_reference/augmentations/geometric/resize/ #albumentations.augmentations.geometric.resize.LongestMaxSize.

  • mode (Union[Sequence[Union[InterpolateMode, str]], InterpolateMode, str]) – {"nearest", "linear", "bilinear", "bicubic", "trilinear", "area"} The interpolation mode. Defaults to "area". See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate It also can be a sequence of string, each element corresponds to a key in keys.

  • align_corners (Union[Sequence[Optional[bool]], bool, None]) – This only has an effect when mode is ‘linear’, ‘bilinear’, ‘bicubic’ or ‘trilinear’. Default: None. See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate It also can be a sequence of bool or None, each element corresponds to a key in keys.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Affined

example of Affined
class monai.transforms.Affined(keys, rotate_params=None, shear_params=None, translate_params=None, scale_params=None, affine=None, spatial_size=None, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.REFLECTION, as_tensor_output=True, device=None, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.Affine.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed.

  • rotate_params (Union[Sequence[float], float, None]) – a rotation angle in radians, a scalar for 2D image, a tuple of 3 floats for 3D. Defaults to no rotation.

  • shear_params (Union[Sequence[float], float, None]) –

    shearing factors for affine matrix, take a 3D affine as example:

    [
        [1.0, params[0], params[1], 0.0],
        [params[2], 1.0, params[3], 0.0],
        [params[4], params[5], 1.0, 0.0],
        [0.0, 0.0, 0.0, 1.0],
    ]
    
    a tuple of 2 floats for 2D, a tuple of 6 floats for 3D. Defaults to no shearing.
    

  • translate_params (Union[Sequence[float], float, None]) – a tuple of 2 floats for 2D, a tuple of 3 floats for 3D. Translation is in pixel/voxel relative to the center of the input image. Defaults to no translation.

  • scale_params (Union[Sequence[float], float, None]) – scale factor for every spatial dims. a tuple of 2 floats for 2D, a tuple of 3 floats for 3D. Defaults to 1.0.

  • affine (Union[ndarray, Tensor, None]) – if applied, ignore the params (rotate_params, etc.) and use the supplied matrix. Should be square with each side = num of image spatial dimensions + 1.

  • spatial_size (Union[Sequence[int], int, None]) – output image spatial size. if spatial_size and self.spatial_size are not defined, or smaller than 1, the transform will use the spatial size of img. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of img size. For example, spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • mode (Union[Sequence[Union[GridSampleMode, str]], GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • padding_mode (Union[Sequence[Union[GridSamplePadMode, str]], GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "reflection". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • device (Optional[device]) – device on which the tensor will be allocated.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

See also

  • monai.transforms.compose.MapTransform

  • RandAffineGrid for the random affine parameters configurations.

Deprecated since version 0.6.0: as_tensor_output is deprecated.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, rotate_params=None, shear_params=None, translate_params=None, scale_params=None, affine=None, spatial_size=None, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.REFLECTION, as_tensor_output=True, device=None, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed.

  • rotate_params (Union[Sequence[float], float, None]) – a rotation angle in radians, a scalar for 2D image, a tuple of 3 floats for 3D. Defaults to no rotation.

  • shear_params (Union[Sequence[float], float, None]) –

    shearing factors for affine matrix, take a 3D affine as example:

    [
        [1.0, params[0], params[1], 0.0],
        [params[2], 1.0, params[3], 0.0],
        [params[4], params[5], 1.0, 0.0],
        [0.0, 0.0, 0.0, 1.0],
    ]
    
    a tuple of 2 floats for 2D, a tuple of 6 floats for 3D. Defaults to no shearing.
    

  • translate_params (Union[Sequence[float], float, None]) – a tuple of 2 floats for 2D, a tuple of 3 floats for 3D. Translation is in pixel/voxel relative to the center of the input image. Defaults to no translation.

  • scale_params (Union[Sequence[float], float, None]) – scale factor for every spatial dims. a tuple of 2 floats for 2D, a tuple of 3 floats for 3D. Defaults to 1.0.

  • affine (Union[ndarray, Tensor, None]) – if applied, ignore the params (rotate_params, etc.) and use the supplied matrix. Should be square with each side = num of image spatial dimensions + 1.

  • spatial_size (Union[Sequence[int], int, None]) – output image spatial size. if spatial_size and self.spatial_size are not defined, or smaller than 1, the transform will use the spatial size of img. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of img size. For example, spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • mode (Union[Sequence[Union[GridSampleMode, str]], GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • padding_mode (Union[Sequence[Union[GridSamplePadMode, str]], GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "reflection". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • device (Optional[device]) – device on which the tensor will be allocated.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

See also

  • monai.transforms.compose.MapTransform

  • RandAffineGrid for the random affine parameters configurations.

Deprecated since version 0.6.0: as_tensor_output is deprecated.

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

RandAffined

example of RandAffined
class monai.transforms.RandAffined(keys, spatial_size=None, prob=0.1, rotate_range=None, shear_range=None, translate_range=None, scale_range=None, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.REFLECTION, cache_grid=False, as_tensor_output=True, device=None, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.RandAffine.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed.

  • spatial_size (Union[Sequence[int], int, None]) – output image spatial size. if spatial_size and self.spatial_size are not defined, or smaller than 1, the transform will use the spatial size of img. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of img size. For example, spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • prob (float) – probability of returning a randomized affine grid. defaults to 0.1, with 10% chance returns a randomized grid.

  • rotate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – angle range in radians. If element i is a pair of (min, max) values, then uniform[-rotate_range[i][0], rotate_range[i][1]) will be used to generate the rotation parameter for the i`th spatial dimension. If not, `uniform[-rotate_range[i], rotate_range[i]) will be used. This can be altered on a per-dimension basis. E.g., ((0,3), 1, …): for dim0, rotation will be in range [0, 3], and for dim1 [-1, 1] will be used. Setting a single value will use [-x, x] for dim0 and nothing for the remaining dimensions.

  • shear_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) –

    shear range with format matching rotate_range, it defines the range to randomly select shearing factors(a tuple of 2 floats for 2D, a tuple of 6 floats for 3D) for affine matrix, take a 3D affine as example:

    [
        [1.0, params[0], params[1], 0.0],
        [params[2], 1.0, params[3], 0.0],
        [params[4], params[5], 1.0, 0.0],
        [0.0, 0.0, 0.0, 1.0],
    ]
    

  • translate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – translate range with format matching rotate_range, it defines the range to randomly select pixel/voxel to translate for every spatial dims.

  • scale_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – scaling range with format matching rotate_range. it defines the range to randomly select the scale factor to translate for every spatial dims. A value of 1.0 is added to the result. This allows 0 to correspond to no change (i.e., a scaling of 1.0).

  • mode (Union[Sequence[Union[GridSampleMode, str]], GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • padding_mode (Union[Sequence[Union[GridSamplePadMode, str]], GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "reflection". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • cache_grid (bool) – whether to cache the identity sampling grid. If the spatial size is not dynamically defined by input image, enabling this option could accelerate the transform.

  • device (Optional[device]) – device on which the tensor will be allocated.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

See also

  • monai.transforms.compose.MapTransform

  • RandAffineGrid for the random affine parameters configurations.

Deprecated since version 0.6.0: as_tensor_output is deprecated.

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

__init__(keys, spatial_size=None, prob=0.1, rotate_range=None, shear_range=None, translate_range=None, scale_range=None, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.REFLECTION, cache_grid=False, as_tensor_output=True, device=None, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed.

  • spatial_size (Union[Sequence[int], int, None]) – output image spatial size. if spatial_size and self.spatial_size are not defined, or smaller than 1, the transform will use the spatial size of img. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of img size. For example, spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • prob (float) – probability of returning a randomized affine grid. defaults to 0.1, with 10% chance returns a randomized grid.

  • rotate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – angle range in radians. If element i is a pair of (min, max) values, then uniform[-rotate_range[i][0], rotate_range[i][1]) will be used to generate the rotation parameter for the i`th spatial dimension. If not, `uniform[-rotate_range[i], rotate_range[i]) will be used. This can be altered on a per-dimension basis. E.g., ((0,3), 1, …): for dim0, rotation will be in range [0, 3], and for dim1 [-1, 1] will be used. Setting a single value will use [-x, x] for dim0 and nothing for the remaining dimensions.

  • shear_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) –

    shear range with format matching rotate_range, it defines the range to randomly select shearing factors(a tuple of 2 floats for 2D, a tuple of 6 floats for 3D) for affine matrix, take a 3D affine as example:

    [
        [1.0, params[0], params[1], 0.0],
        [params[2], 1.0, params[3], 0.0],
        [params[4], params[5], 1.0, 0.0],
        [0.0, 0.0, 0.0, 1.0],
    ]
    

  • translate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – translate range with format matching rotate_range, it defines the range to randomly select pixel/voxel to translate for every spatial dims.

  • scale_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – scaling range with format matching rotate_range. it defines the range to randomly select the scale factor to translate for every spatial dims. A value of 1.0 is added to the result. This allows 0 to correspond to no change (i.e., a scaling of 1.0).

  • mode (Union[Sequence[Union[GridSampleMode, str]], GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • padding_mode (Union[Sequence[Union[GridSamplePadMode, str]], GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "reflection". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • cache_grid (bool) – whether to cache the identity sampling grid. If the spatial size is not dynamically defined by input image, enabling this option could accelerate the transform.

  • device (Optional[device]) – device on which the tensor will be allocated.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

See also

  • monai.transforms.compose.MapTransform

  • RandAffineGrid for the random affine parameters configurations.

Deprecated since version 0.6.0: as_tensor_output is deprecated.

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandAffined

Returns

a Randomizable instance.

Rand2DElasticd

example of Rand2DElasticd
class monai.transforms.Rand2DElasticd(keys, spacing, magnitude_range, spatial_size=None, prob=0.1, rotate_range=None, shear_range=None, translate_range=None, scale_range=None, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.REFLECTION, as_tensor_output=False, device=None, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.Rand2DElastic.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed.

  • spacing (Union[Tuple[float, float], float]) – distance in between the control points.

  • magnitude_range (Tuple[float, float]) – 2 int numbers, the random offsets will be generated from uniform[magnitude[0], magnitude[1]).

  • spatial_size (Union[int, Tuple[int, int], None]) – specifying output image spatial size [h, w]. if spatial_size and self.spatial_size are not defined, or smaller than 1, the transform will use the spatial size of img. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of img size. For example, spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • prob (float) – probability of returning a randomized affine grid. defaults to 0.1, with 10% chance returns a randomized grid, otherwise returns a spatial_size centered area extracted from the input image.

  • rotate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – angle range in radians. If element i is a pair of (min, max) values, then uniform[-rotate_range[i][0], rotate_range[i][1]) will be used to generate the rotation parameter for the i`th spatial dimension. If not, `uniform[-rotate_range[i], rotate_range[i]) will be used. This can be altered on a per-dimension basis. E.g., ((0,3), 1, …): for dim0, rotation will be in range [0, 3], and for dim1 [-1, 1] will be used. Setting a single value will use [-x, x] for dim0 and nothing for the remaining dimensions.

  • shear_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) –

    shear range with format matching rotate_range, it defines the range to randomly select shearing factors(a tuple of 2 floats for 2D) for affine matrix, take a 2D affine as example:

    [
        [1.0, params[0], 0.0],
        [params[1], 1.0, 0.0],
        [0.0, 0.0, 1.0],
    ]
    

  • translate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – translate range with format matching rotate_range, it defines the range to randomly select pixel to translate for every spatial dims.

  • scale_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – scaling range with format matching rotate_range. it defines the range to randomly select the scale factor to translate for every spatial dims. A value of 1.0 is added to the result. This allows 0 to correspond to no change (i.e., a scaling of 1.0).

  • mode (Union[Sequence[Union[GridSampleMode, str]], GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • padding_mode (Union[Sequence[Union[GridSamplePadMode, str]], GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "reflection". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • device (Optional[device]) – device on which the tensor will be allocated.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

See also

  • RandAffineGrid for the random affine parameters configurations.

  • Affine for the affine transformation parameters configurations.

Deprecated since version 0.6.0: as_tensor_output is deprecated.

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

__init__(keys, spacing, magnitude_range, spatial_size=None, prob=0.1, rotate_range=None, shear_range=None, translate_range=None, scale_range=None, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.REFLECTION, as_tensor_output=False, device=None, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed.

  • spacing (Union[Tuple[float, float], float]) – distance in between the control points.

  • magnitude_range (Tuple[float, float]) – 2 int numbers, the random offsets will be generated from uniform[magnitude[0], magnitude[1]).

  • spatial_size (Union[int, Tuple[int, int], None]) – specifying output image spatial size [h, w]. if spatial_size and self.spatial_size are not defined, or smaller than 1, the transform will use the spatial size of img. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of img size. For example, spatial_size=(32, -1) will be adapted to (32, 64) if the second spatial dimension size of img is 64.

  • prob (float) – probability of returning a randomized affine grid. defaults to 0.1, with 10% chance returns a randomized grid, otherwise returns a spatial_size centered area extracted from the input image.

  • rotate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – angle range in radians. If element i is a pair of (min, max) values, then uniform[-rotate_range[i][0], rotate_range[i][1]) will be used to generate the rotation parameter for the i`th spatial dimension. If not, `uniform[-rotate_range[i], rotate_range[i]) will be used. This can be altered on a per-dimension basis. E.g., ((0,3), 1, …): for dim0, rotation will be in range [0, 3], and for dim1 [-1, 1] will be used. Setting a single value will use [-x, x] for dim0 and nothing for the remaining dimensions.

  • shear_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) –

    shear range with format matching rotate_range, it defines the range to randomly select shearing factors(a tuple of 2 floats for 2D) for affine matrix, take a 2D affine as example:

    [
        [1.0, params[0], 0.0],
        [params[1], 1.0, 0.0],
        [0.0, 0.0, 1.0],
    ]
    

  • translate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – translate range with format matching rotate_range, it defines the range to randomly select pixel to translate for every spatial dims.

  • scale_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – scaling range with format matching rotate_range. it defines the range to randomly select the scale factor to translate for every spatial dims. A value of 1.0 is added to the result. This allows 0 to correspond to no change (i.e., a scaling of 1.0).

  • mode (Union[Sequence[Union[GridSampleMode, str]], GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • padding_mode (Union[Sequence[Union[GridSamplePadMode, str]], GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "reflection". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • device (Optional[device]) – device on which the tensor will be allocated.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

See also

  • RandAffineGrid for the random affine parameters configurations.

  • Affine for the affine transformation parameters configurations.

Deprecated since version 0.6.0: as_tensor_output is deprecated.

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

Rand2DElasticd

Returns

a Randomizable instance.

Rand3DElasticd

example of Rand3DElasticd
class monai.transforms.Rand3DElasticd(keys, sigma_range, magnitude_range, spatial_size=None, prob=0.1, rotate_range=None, shear_range=None, translate_range=None, scale_range=None, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.REFLECTION, as_tensor_output=False, device=None, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.Rand3DElastic.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed.

  • sigma_range (Tuple[float, float]) – a Gaussian kernel with standard deviation sampled from uniform[sigma_range[0], sigma_range[1]) will be used to smooth the random offset grid.

  • magnitude_range (Tuple[float, float]) – the random offsets on the grid will be generated from uniform[magnitude[0], magnitude[1]).

  • spatial_size (Union[Tuple[int, int, int], int, None]) – specifying output image spatial size [h, w, d]. if spatial_size and self.spatial_size are not defined, or smaller than 1, the transform will use the spatial size of img. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of img size. For example, spatial_size=(32, 32, -1) will be adapted to (32, 32, 64) if the third spatial dimension size of img is 64.

  • prob (float) – probability of returning a randomized affine grid. defaults to 0.1, with 10% chance returns a randomized grid, otherwise returns a spatial_size centered area extracted from the input image.

  • rotate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – angle range in radians. If element i is a pair of (min, max) values, then uniform[-rotate_range[i][0], rotate_range[i][1]) will be used to generate the rotation parameter for the i`th spatial dimension. If not, `uniform[-rotate_range[i], rotate_range[i]) will be used. This can be altered on a per-dimension basis. E.g., ((0,3), 1, …): for dim0, rotation will be in range [0, 3], and for dim1 [-1, 1] will be used. Setting a single value will use [-x, x] for dim0 and nothing for the remaining dimensions.

  • shear_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) –

    shear range with format matching rotate_range, it defines the range to randomly select shearing factors(a tuple of 6 floats for 3D) for affine matrix, take a 3D affine as example:

    [
        [1.0, params[0], params[1], 0.0],
        [params[2], 1.0, params[3], 0.0],
        [params[4], params[5], 1.0, 0.0],
        [0.0, 0.0, 0.0, 1.0],
    ]
    

  • translate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – translate range with format matching rotate_range, it defines the range to randomly select voxel to translate for every spatial dims.

  • scale_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – scaling range with format matching rotate_range. it defines the range to randomly select the scale factor to translate for every spatial dims. A value of 1.0 is added to the result. This allows 0 to correspond to no change (i.e., a scaling of 1.0).

  • mode (Union[Sequence[Union[GridSampleMode, str]], GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • padding_mode (Union[Sequence[Union[GridSamplePadMode, str]], GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "reflection". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • device (Optional[device]) – device on which the tensor will be allocated.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

See also

  • RandAffineGrid for the random affine parameters configurations.

  • Affine for the affine transformation parameters configurations.

Deprecated since version 0.6.0: as_tensor_output is deprecated.

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

__init__(keys, sigma_range, magnitude_range, spatial_size=None, prob=0.1, rotate_range=None, shear_range=None, translate_range=None, scale_range=None, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.REFLECTION, as_tensor_output=False, device=None, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed.

  • sigma_range (Tuple[float, float]) – a Gaussian kernel with standard deviation sampled from uniform[sigma_range[0], sigma_range[1]) will be used to smooth the random offset grid.

  • magnitude_range (Tuple[float, float]) – the random offsets on the grid will be generated from uniform[magnitude[0], magnitude[1]).

  • spatial_size (Union[Tuple[int, int, int], int, None]) – specifying output image spatial size [h, w, d]. if spatial_size and self.spatial_size are not defined, or smaller than 1, the transform will use the spatial size of img. if some components of the spatial_size are non-positive values, the transform will use the corresponding components of img size. For example, spatial_size=(32, 32, -1) will be adapted to (32, 32, 64) if the third spatial dimension size of img is 64.

  • prob (float) – probability of returning a randomized affine grid. defaults to 0.1, with 10% chance returns a randomized grid, otherwise returns a spatial_size centered area extracted from the input image.

  • rotate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – angle range in radians. If element i is a pair of (min, max) values, then uniform[-rotate_range[i][0], rotate_range[i][1]) will be used to generate the rotation parameter for the i`th spatial dimension. If not, `uniform[-rotate_range[i], rotate_range[i]) will be used. This can be altered on a per-dimension basis. E.g., ((0,3), 1, …): for dim0, rotation will be in range [0, 3], and for dim1 [-1, 1] will be used. Setting a single value will use [-x, x] for dim0 and nothing for the remaining dimensions.

  • shear_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) –

    shear range with format matching rotate_range, it defines the range to randomly select shearing factors(a tuple of 6 floats for 3D) for affine matrix, take a 3D affine as example:

    [
        [1.0, params[0], params[1], 0.0],
        [params[2], 1.0, params[3], 0.0],
        [params[4], params[5], 1.0, 0.0],
        [0.0, 0.0, 0.0, 1.0],
    ]
    

  • translate_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – translate range with format matching rotate_range, it defines the range to randomly select voxel to translate for every spatial dims.

  • scale_range (Union[Sequence[Union[Tuple[float, float], float]], float, None]) – scaling range with format matching rotate_range. it defines the range to randomly select the scale factor to translate for every spatial dims. A value of 1.0 is added to the result. This allows 0 to correspond to no change (i.e., a scaling of 1.0).

  • mode (Union[Sequence[Union[GridSampleMode, str]], GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • padding_mode (Union[Sequence[Union[GridSamplePadMode, str]], GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "reflection". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • device (Optional[device]) – device on which the tensor will be allocated.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

See also

  • RandAffineGrid for the random affine parameters configurations.

  • Affine for the affine transformation parameters configurations.

Deprecated since version 0.6.0: as_tensor_output is deprecated.

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

Rand3DElasticd

Returns

a Randomizable instance.

AddCoordinateChannelsd

class monai.transforms.AddCoordinateChannelsd(keys, spatial_channels, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.AddCoordinateChannels.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • spatial_channels (Sequence[int]) – the spatial dimensions that are to have their coordinates encoded in a channel and appended to the input. E.g., (1,2,3) will append three channels to the input, encoding the coordinates of the input’s three spatial dimensions. It is assumed dimension 0 is the channel.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, spatial_channels, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • spatial_channels (Sequence[int]) – the spatial dimensions that are to have their coordinates encoded in a channel and appended to the input. E.g., (1,2,3) will append three channels to the input, encoding the coordinates of the input’s three spatial dimensions. It is assumed dimension 0 is the channel.

GridDistortiond

class monai.transforms.GridDistortiond(keys, num_cells, distort_steps, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.BORDER, device=None, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.GridDistortion.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed.

  • num_cells (Union[Tuple[int], int]) – number of grid cells on each dimension.

  • distort_steps (List[Tuple]) – This argument is a list of tuples, where each tuple contains the distort steps of the corresponding dimensions (in the order of H, W[, D]). The length of each tuple equals to num_cells + 1. Each value in the tuple represents the distort step of the related cell.

  • mode (Union[GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • padding_mode (Union[GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "reflection". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • device (Optional[device]) – device on which the tensor will be allocated.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, num_cells, distort_steps, mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.BORDER, device=None, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed.

  • num_cells (Union[Tuple[int], int]) – number of grid cells on each dimension.

  • distort_steps (List[Tuple]) – This argument is a list of tuples, where each tuple contains the distort steps of the corresponding dimensions (in the order of H, W[, D]). The length of each tuple equals to num_cells + 1. Each value in the tuple represents the distort step of the related cell.

  • mode (Union[GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • padding_mode (Union[GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "reflection". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • device (Optional[device]) – device on which the tensor will be allocated.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

RandGridDistortiond

example of RandGridDistortiond
class monai.transforms.RandGridDistortiond(keys, num_cells=5, prob=0.1, distort_limit=(- 0.03, 0.03), mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.BORDER, device=None, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.RandGridDistortion.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed.

  • num_cells (Union[Tuple[int], int]) – number of grid cells on each dimension.

  • prob (float) – probability of returning a randomized grid distortion transform. Defaults to 0.1.

  • distort_limit (Union[Tuple[float, float], float]) – range to randomly distort. If single number, distort_limit is picked from (-distort_limit, distort_limit). Defaults to (-0.03, 0.03).

  • mode (Union[GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • padding_mode (Union[GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "reflection". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • device (Optional[device]) – device on which the tensor will be allocated.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

__init__(keys, num_cells=5, prob=0.1, distort_limit=(- 0.03, 0.03), mode=GridSampleMode.BILINEAR, padding_mode=GridSamplePadMode.BORDER, device=None, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed.

  • num_cells (Union[Tuple[int], int]) – number of grid cells on each dimension.

  • prob (float) – probability of returning a randomized grid distortion transform. Defaults to 0.1.

  • distort_limit (Union[Tuple[float, float], float]) – range to randomly distort. If single number, distort_limit is picked from (-distort_limit, distort_limit). Defaults to (-0.03, 0.03).

  • mode (Union[GridSampleMode, str]) – {"bilinear", "nearest"} Interpolation mode to calculate output values. Defaults to "bilinear". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • padding_mode (Union[GridSamplePadMode, str]) – {"zeros", "border", "reflection"} Padding mode for outside grid values. Defaults to "reflection". See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample It also can be a sequence of string, each element corresponds to a key in keys.

  • device (Optional[device]) – device on which the tensor will be allocated.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandGridDistortiond

Returns

a Randomizable instance.

Smooth Field (Dict)

RandSmoothFieldAdjustContrastd

class monai.transforms.RandSmoothFieldAdjustContrastd(keys, spatial_size, rand_size, padder=None, mode=InterpolateMode.AREA, align_corners=None, prob=0.1, gamma=(0.5, 4.5), apply_same_field=True)[source]

Dictionary version of RandSmoothFieldAdjustContrast. The field is randomized once per invocation by default so the same field is applied to every selected key.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – key names to apply the augment to

  • spatial_size (Union[Sequence[int], int]) – size of input arrays, all arrays stated in keys must have same dimensions

  • rand_size (Union[Sequence[int], int]) – size of the randomized field to start from

  • padder (Optional[Transform]) – optional transform to add padding to the randomized field

  • mode (Union[InterpolateMode, str]) – interpolation mode to use when upsampling

  • align_corners (Optional[bool]) – if True align the corners when upsampling field

  • prob (float) – probability transform is applied

  • gamma (Union[Sequence[float], float]) – (min, max) range for exponential field

  • apply_same_field (bool) – if True, apply the same field to each key, otherwise randomize individually

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Mapping[Hashable, ndarray]

randomize(data=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandSmoothFieldAdjustContrastd

Returns

a Randomizable instance.

RandSmoothFieldAdjustIntensityd

class monai.transforms.RandSmoothFieldAdjustIntensityd(keys, spatial_size, rand_size, padder=None, mode=InterpolateMode.AREA, align_corners=None, prob=0.1, gamma=(0.1, 1.0), apply_same_field=True)[source]

Dictionary version of RandSmoothFieldAdjustIntensity. The field is randomized once per invocation by default so the same field is applied to every selected key.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – key names to apply the augment to

  • spatial_size (Union[Sequence[int], int]) – size of input arrays, all arrays stated in keys must have same dimensions

  • rand_size (Union[Sequence[int], int]) – size of the randomized field to start from

  • padder (Optional[Transform]) – optional transform to add padding to the randomized field

  • mode (Union[InterpolateMode, str]) – interpolation mode to use when upsampling

  • align_corners (Optional[bool]) – if True align the corners when upsampling field

  • prob (float) – probability transform is applied

  • gamma (Union[Sequence[float], float]) – (min, max) range of intensity multipliers

  • apply_same_field (bool) – if True, apply the same field to each key, otherwise randomize individually

__call__(data)[source]

data is an element which often comes from an iteration over an iterable, such as torch.utils.data.Dataset. This method should return an updated version of data. To simplify the input validations, most of the transforms assume that

  • data is a Numpy ndarray, PyTorch Tensor or string,

  • the data shape can be:

    1. string data without shape, LoadImage transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChannel expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirst expects (spatial_dim_1[, spatial_dim_2, …], num_channels),

  • the channel dimension is often not omitted even if number of channels is one.

This method can optionally take additional arguments to help execute transformation operation.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Mapping[Hashable, ndarray]

randomize(data=None)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Return type

None

set_random_state(seed=None, state=None)[source]

Set the random state locally, to control the randomness, the derived classes should use self.R instead of np.random to introduce random factors.

Parameters
  • seed (Optional[int]) – set the random state with an integer seed.

  • state (Optional[RandomState]) – set the random state with a np.random.RandomState object.

Raises

TypeError – When state is not an Optional[np.random.RandomState].

Return type

RandSmoothFieldAdjustIntensityd

Returns

a Randomizable instance.

Utility (Dict)

Identityd

class monai.transforms.Identityd(keys, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.Identity.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

AsChannelFirstd

class monai.transforms.AsChannelFirstd(keys, channel_dim=- 1, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.AsChannelFirst.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • channel_dim (int) – which dimension of input image is the channel, default is the last dimension.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, channel_dim=- 1, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • channel_dim (int) – which dimension of input image is the channel, default is the last dimension.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

AsChannelLastd

class monai.transforms.AsChannelLastd(keys, channel_dim=0, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.AsChannelLast.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • channel_dim (int) – which dimension of input image is the channel, default is the first dimension.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, channel_dim=0, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • channel_dim (int) – which dimension of input image is the channel, default is the first dimension.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

AddChanneld

class monai.transforms.AddChanneld(keys, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.AddChannel.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

EnsureChannelFirstd

class monai.transforms.EnsureChannelFirstd(keys, meta_keys=None, meta_key_postfix='meta_dict', strict_check=True)[source]

Dictionary-based wrapper of monai.transforms.EnsureChannelFirst.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • meta_keys (Union[Collection[Hashable], Hashable, None]) – explicitly indicate the key of the corresponding meta data dictionary. for example, for data with key image, the metadata by default is in image_meta_dict. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by key_{meta_key_postfix}.

  • meta_key_postfix (str) – if meta_keys is None and key_{postfix} was used to store the metadata in LoadImaged. So need the key to extract metadata for channel dim information, default is meta_dict. For example, for data with key image, metadata by default is in image_meta_dict.

  • strict_check (bool) – whether to raise an error when the meta information is insufficient.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, meta_keys=None, meta_key_postfix='meta_dict', strict_check=True)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • meta_keys (Union[Collection[Hashable], Hashable, None]) – explicitly indicate the key of the corresponding meta data dictionary. for example, for data with key image, the metadata by default is in image_meta_dict. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by key_{meta_key_postfix}.

  • meta_key_postfix (str) – if meta_keys is None and key_{postfix} was used to store the metadata in LoadImaged. So need the key to extract metadata for channel dim information, default is meta_dict. For example, for data with key image, metadata by default is in image_meta_dict.

  • strict_check (bool) – whether to raise an error when the meta information is insufficient.

RepeatChanneld

class monai.transforms.RepeatChanneld(keys, repeats, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.RepeatChannel.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • repeats (int) – the number of repetitions for each element.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, repeats, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • repeats (int) – the number of repetitions for each element.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

SplitChanneld

class monai.transforms.SplitChanneld(keys, output_postfixes=None, channel_dim=0, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.SplitChannel. All the input specified by keys should be split into same count of data.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • output_postfixes (Optional[Sequence[str]]) – the postfixes to construct keys to store split data. for example: if the key of input data is pred and split 2 classes, the output data keys will be: pred_(output_postfixes[0]), pred_(output_postfixes[1]) if None, using the index number: pred_0, pred_1, … pred_N.

  • channel_dim (int) – which dimension of input image is the channel, default to 0.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, output_postfixes=None, channel_dim=0, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • output_postfixes (Optional[Sequence[str]]) – the postfixes to construct keys to store split data. for example: if the key of input data is pred and split 2 classes, the output data keys will be: pred_(output_postfixes[0]), pred_(output_postfixes[1]) if None, using the index number: pred_0, pred_1, … pred_N.

  • channel_dim (int) – which dimension of input image is the channel, default to 0.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

CastToTyped

class monai.transforms.CastToTyped(keys, dtype=<class 'numpy.float32'>, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.CastToType.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • dtype (Union[Sequence[Union[dtype, type, None, dtype]], dtype, type, None, dtype]) – convert image to this data type, default is np.float32. it also can be a sequence of dtypes or torch.dtype, each element corresponds to a key in keys.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, dtype=<class 'numpy.float32'>, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • dtype (Union[Sequence[Union[dtype, type, None, dtype]], dtype, type, None, dtype]) – convert image to this data type, default is np.float32. it also can be a sequence of dtypes or torch.dtype, each element corresponds to a key in keys.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

ToTensord

class monai.transforms.ToTensord(keys, dtype=None, device=None, wrap_sequence=True, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.ToTensor.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • dtype (Optional[dtype]) – target data content type to convert, for example: torch.float, etc.

  • device (Optional[device]) – specify the target device to put the Tensor data.

  • wrap_sequence (bool) – if False, then lists will recursively call this function, default to True. E.g., if False, [1, 2] -> [tensor(1), tensor(2)], if True, then [1, 2] -> tensor([1, 2]).

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, dtype=None, device=None, wrap_sequence=True, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • dtype (Optional[dtype]) – target data content type to convert, for example: torch.float, etc.

  • device (Optional[device]) – specify the target device to put the Tensor data.

  • wrap_sequence (bool) – if False, then lists will recursively call this function, default to True. E.g., if False, [1, 2] -> [tensor(1), tensor(2)], if True, then [1, 2] -> tensor([1, 2]).

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

ToNumpyd

class monai.transforms.ToNumpyd(keys, dtype=None, wrap_sequence=True, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.ToNumpy.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • dtype (Union[dtype, type, None]) – target data type when converting to numpy array.

  • wrap_sequence (bool) – if False, then lists will recursively call this function, default to True. E.g., if False, [1, 2] -> [array(1), array(2)], if True, then [1, 2] -> array([1, 2]).

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Any]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, dtype=None, wrap_sequence=True, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • dtype (Union[dtype, type, None]) – target data type when converting to numpy array.

  • wrap_sequence (bool) – if False, then lists will recursively call this function, default to True. E.g., if False, [1, 2] -> [array(1), array(2)], if True, then [1, 2] -> array([1, 2]).

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

ToCupyd

class monai.transforms.ToCupyd(keys, dtype=None, wrap_sequence=True, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.ToCupy.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • dtype – data type specifier. It is inferred from the input by default.

  • wrap_sequence (bool) – if False, then lists will recursively call this function, default to True. E.g., if False, [1, 2] -> [array(1), array(2)], if True, then [1, 2] -> array([1, 2]).

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

DeleteItemsd

class monai.transforms.DeleteItemsd(keys, sep='.', use_re=False)[source]

Delete specified items from data dictionary to release memory. It will remove the key-values and copy the others to construct a new dictionary.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to delete, can be “A{sep}B{sep}C” to delete key C in nested dictionary, C can be regular expression. See also: monai.transforms.compose.MapTransform

  • sep (str) – the separator tag to define nested dictionary keys, default to “.”.

  • use_re (Union[Sequence[bool], bool]) – whether the specified key is a regular expression, it also can be a list of bool values, map the to keys.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, sep='.', use_re=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to delete, can be “A{sep}B{sep}C” to delete key C in nested dictionary, C can be regular expression. See also: monai.transforms.compose.MapTransform

  • sep (str) – the separator tag to define nested dictionary keys, default to “.”.

  • use_re (Union[Sequence[bool], bool]) – whether the specified key is a regular expression, it also can be a list of bool values, map the to keys.

SelectItemsd

class monai.transforms.SelectItemsd(keys, allow_missing_keys=False)[source]

Select only specified items from data dictionary to release memory. It will copy the selected key-values and construct and new dictionary.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Returns

An updated dictionary version of data by applying the transform.

SqueezeDimd

class monai.transforms.SqueezeDimd(keys, dim=0, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.SqueezeDim.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • dim (int) – dimension to be squeezed. Default: 0 (the first dimension)

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, dim=0, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • dim (int) – dimension to be squeezed. Default: 0 (the first dimension)

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

DataStatsd

class monai.transforms.DataStatsd(keys, prefix='Data', data_type=True, data_shape=True, value_range=True, data_value=False, additional_info=None, logger_handler=None, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.DataStats.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • prefix (Union[Sequence[str], str]) – will be printed in format: “{prefix} statistics”. it also can be a sequence of string, each element corresponds to a key in keys.

  • data_type (Union[Sequence[bool], bool]) – whether to show the type of input data. it also can be a sequence of bool, each element corresponds to a key in keys.

  • data_shape (Union[Sequence[bool], bool]) – whether to show the shape of input data. it also can be a sequence of bool, each element corresponds to a key in keys.

  • value_range (Union[Sequence[bool], bool]) – whether to show the value range of input data. it also can be a sequence of bool, each element corresponds to a key in keys.

  • data_value (Union[Sequence[bool], bool]) – whether to show the raw value of input data. it also can be a sequence of bool, each element corresponds to a key in keys. a typical example is to print some properties of Nifti image: affine, pixdim, etc.

  • additional_info (Union[Sequence[Callable], Callable, None]) – user can define callable function to extract additional info from input data. it also can be a sequence of string, each element corresponds to a key in keys.

  • logger_handler (Optional[Handler]) – add additional handler to output data: save to file, etc. add existing python logging handlers: https://docs.python.org/3/library/logging.handlers.html the handler should have a logging level of at least INFO.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, prefix='Data', data_type=True, data_shape=True, value_range=True, data_value=False, additional_info=None, logger_handler=None, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • prefix (Union[Sequence[str], str]) – will be printed in format: “{prefix} statistics”. it also can be a sequence of string, each element corresponds to a key in keys.

  • data_type (Union[Sequence[bool], bool]) – whether to show the type of input data. it also can be a sequence of bool, each element corresponds to a key in keys.

  • data_shape (Union[Sequence[bool], bool]) – whether to show the shape of input data. it also can be a sequence of bool, each element corresponds to a key in keys.

  • value_range (Union[Sequence[bool], bool]) – whether to show the value range of input data. it also can be a sequence of bool, each element corresponds to a key in keys.

  • data_value (Union[Sequence[bool], bool]) – whether to show the raw value of input data. it also can be a sequence of bool, each element corresponds to a key in keys. a typical example is to print some properties of Nifti image: affine, pixdim, etc.

  • additional_info (Union[Sequence[Callable], Callable, None]) – user can define callable function to extract additional info from input data. it also can be a sequence of string, each element corresponds to a key in keys.

  • logger_handler (Optional[Handler]) – add additional handler to output data: save to file, etc. add existing python logging handlers: https://docs.python.org/3/library/logging.handlers.html the handler should have a logging level of at least INFO.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

SimulateDelayd

class monai.transforms.SimulateDelayd(keys, delay_time=0.0, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.SimulateDelay.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • delay_time (Union[Sequence[float], float]) – The minimum amount of time, in fractions of seconds, to accomplish this identity task. It also can be a sequence of string, each element corresponds to a key in keys.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, delay_time=0.0, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • delay_time (Union[Sequence[float], float]) – The minimum amount of time, in fractions of seconds, to accomplish this identity task. It also can be a sequence of string, each element corresponds to a key in keys.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

CopyItemsd

class monai.transforms.CopyItemsd(keys, times, names, allow_missing_keys=False)[source]

Copy specified items from data dictionary and save with different key names. It can copy several items together and copy several times.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • times (int) – expected copy times, for example, if keys is “img”, times is 3, it will add 3 copies of “img” data to the dictionary.

  • names (Union[Collection[Hashable], Hashable]) – the names corresponding to the newly copied data, the length should match len(keys) x times. for example, if keys is [“img”, “seg”] and times is 2, names can be: [“img_1”, “seg_1”, “img_2”, “seg_2”].

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

Raises
  • ValueError – When times is nonpositive.

  • ValueError – When len(names) is not len(keys) * times. Incompatible values.

__call__(data)[source]
Raises

KeyError – When a key in self.names already exists in data.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

__init__(keys, times, names, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • times (int) – expected copy times, for example, if keys is “img”, times is 3, it will add 3 copies of “img” data to the dictionary.

  • names (Union[Collection[Hashable], Hashable]) – the names corresponding to the newly copied data, the length should match len(keys) x times. for example, if keys is [“img”, “seg”] and times is 2, names can be: [“img_1”, “seg_1”, “img_2”, “seg_2”].

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

Raises
  • ValueError – When times is nonpositive.

  • ValueError – When len(names) is not len(keys) * times. Incompatible values.

ConcatItemsd

class monai.transforms.ConcatItemsd(keys, name, dim=0, allow_missing_keys=False)[source]

Concatenate specified items from data dictionary together on the first dim to construct a big array. Expect all the items are numpy array or PyTorch Tensor.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be concatenated together. See also: monai.transforms.compose.MapTransform

  • name (str) – the name corresponding to the key to store the concatenated data.

  • dim (int) – on which dimension to concatenate the items, default is 0.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]
Raises
  • TypeError – When items in data differ in type.

  • TypeError – When the item type is not in Union[numpy.ndarray, torch.Tensor].

Return type

Dict[Hashable, Union[ndarray, Tensor]]

__init__(keys, name, dim=0, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be concatenated together. See also: monai.transforms.compose.MapTransform

  • name (str) – the name corresponding to the key to store the concatenated data.

  • dim (int) – on which dimension to concatenate the items, default is 0.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

Lambdad

class monai.transforms.Lambdad(keys, func, inv_func=<function no_collation>, overwrite=True, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.Lambda.

For example:

input_data={'image': np.zeros((10, 2, 2)), 'label': np.ones((10, 2, 2))}
lambd = Lambdad(keys='label', func=lambda x: x[:4, :, :])
print(lambd(input_data)['label'].shape)
(4, 2, 2)
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • func (Union[Sequence[Callable], Callable]) – Lambda/function to be applied. It also can be a sequence of Callable, each element corresponds to a key in keys.

  • inv_func (Union[Sequence[Callable], Callable]) – Lambda/function of inverse operation if want to invert transforms, default to lambda x: x. It also can be a sequence of Callable, each element corresponds to a key in keys.

  • overwrite (Union[Sequence[bool], bool]) – whether to overwrite the original data in the input dictionary with lamdbda function output. default to True. it also can be a sequence of bool, each element corresponds to a key in keys.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

Note: The inverse operation doesn’t allow to define extra_info or access other information, such as the

image’s original size. If need these complicated information, please write a new InvertibleTransform directly.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

RandLambdad

class monai.transforms.RandLambdad(keys, func, inv_func=<function no_collation>, overwrite=True, prob=1.0, allow_missing_keys=False)[source]

Randomizable version monai.transforms.Lambdad, the input func may contain random logic, or randomly execute the function based on prob. so CacheDataset will not execute it and cache the results.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • func (Union[Sequence[Callable], Callable]) – Lambda/function to be applied. It also can be a sequence of Callable, each element corresponds to a key in keys.

  • inv_func (Union[Sequence[Callable], Callable]) – Lambda/function of inverse operation if want to invert transforms, default to lambda x: x. It also can be a sequence of Callable, each element corresponds to a key in keys.

  • overwrite (Union[Sequence[bool], bool]) – whether to overwrite the original data in the input dictionary with lamdbda function output. default to True. it also can be a sequence of bool, each element corresponds to a key in keys.

  • prob (float) – probability of executing the random function, default to 1.0, with 100% probability to execute. note that all the data specified by keys will share the same random probability to execute or not.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

For more details, please check monai.transforms.Lambdad.

Note: The inverse operation doesn’t allow to define extra_info or access other information, such as the

image’s original size. If need these complicated information, please write a new InvertibleTransform directly.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Returns

An updated dictionary version of data by applying the transform.

LabelToMaskd

class monai.transforms.LabelToMaskd(keys, select_labels, merge_channels=False, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.LabelToMask.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • select_labels (Union[Sequence[int], int]) – labels to generate mask from. for 1 channel label, the select_labels is the expected label values, like: [1, 2, 3]. for One-Hot format label, the select_labels is the expected channel indices.

  • merge_channels (bool) – whether to use np.any() to merge the result on channel dim. if yes, will return a single channel mask with binary data.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

FgBgToIndicesd

class monai.transforms.FgBgToIndicesd(keys, fg_postfix='_fg_indices', bg_postfix='_bg_indices', image_key=None, image_threshold=0.0, output_shape=None, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.FgBgToIndices.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • fg_postfix (str) – postfix to save the computed foreground indices in dict. for example, if computed on label and postfix = “_fg_indices”, the key will be label_fg_indices.

  • bg_postfix (str) – postfix to save the computed background indices in dict. for example, if computed on label and postfix = “_bg_indices”, the key will be label_bg_indices.

  • image_key (Optional[str]) – if image_key is not None, use label == 0 & image > image_threshold to determine the negative sample(background). so the output items will not map to all the voxels in the label.

  • image_threshold (float) – if enabled image_key, use image > image_threshold to determine the valid image content area and select background only in this area.

  • output_shape (Optional[Sequence[int]]) – expected shape of output indices. if not None, unravel indices to specified shape.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

ClassesToIndicesd

class monai.transforms.ClassesToIndicesd(keys, indices_postfix='_cls_indices', num_classes=None, image_key=None, image_threshold=0.0, output_shape=None, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.ClassesToIndices.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • indices_postfix (str) – postfix to save the computed indices of all classes in dict. for example, if computed on label and postfix = “_cls_indices”, the key will be label_cls_indices.

  • num_classes (Optional[int]) – number of classes for argmax label, not necessary for One-Hot label.

  • image_key (Optional[str]) – if image_key is not None, use image > image_threshold to define valid region, and only select the indices within the valid region.

  • image_threshold (float) – if enabled image_key, use image > image_threshold to determine the valid image content area and select only the indices of classes in this area.

  • output_shape (Optional[Sequence[int]]) – expected shape of output indices. if not None, unravel indices to specified shape.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Returns

An updated dictionary version of data by applying the transform.

ConvertToMultiChannelBasedOnBratsClassesd

class monai.transforms.ConvertToMultiChannelBasedOnBratsClassesd(keys, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.ConvertToMultiChannelBasedOnBratsClasses. Convert labels to multi channels based on brats18 classes: label 1 is the necrotic and non-enhancing tumor core label 2 is the the peritumoral edema label 4 is the GD-enhancing tumor The possible classes are TC (Tumor core), WT (Whole tumor) and ET (Enhancing tumor).

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

AddExtremePointsChanneld

class monai.transforms.AddExtremePointsChanneld(keys, label_key, background=0, pert=0.0, sigma=3.0, rescale_min=- 1.0, rescale_max=1.0, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.AddExtremePointsChannel.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • label_key (str) – key to label source to get the extreme points.

  • background (int) – Class index of background label, defaults to 0.

  • pert (float) – Random perturbation amount to add to the points, defaults to 0.0.

  • sigma (Union[Sequence[float], float, Sequence[Tensor], Tensor]) – if a list of values, must match the count of spatial dimensions of input data, and apply every value in the list to 1 spatial dimension. if only 1 value provided, use it for all spatial dimensions.

  • rescale_min (float) – minimum value of output data.

  • rescale_max (float) – maximum value of output data.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

Call self as a function.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

randomize(label)[source]

Within this method, self.R should be used, instead of np.random, to introduce random factors.

all self.R calls happen here so that we have a better chance to identify errors of sync the random state.

This method can generate the random factors based on properties of the input data.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

None

TorchVisiond

class monai.transforms.TorchVisiond(keys, name, allow_missing_keys=False, *args, **kwargs)[source]

Dictionary-based wrapper of monai.transforms.TorchVision for non-randomized transforms. For randomized transforms of TorchVision use monai.transforms.RandTorchVisiond.

Note

As most of the TorchVision transforms only work for PIL image and PyTorch Tensor, this transform expects input data to be dict of PyTorch Tensors, users can easily call ToTensord transform to convert Numpy to Tensor.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • name (str) – The transform name in TorchVision package.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • args – parameters for the TorchVision transform.

  • kwargs – parameters for the TorchVision transform.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, name, allow_missing_keys=False, *args, **kwargs)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • name (str) – The transform name in TorchVision package.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • args – parameters for the TorchVision transform.

  • kwargs – parameters for the TorchVision transform.

RandTorchVisiond

class monai.transforms.RandTorchVisiond(keys, name, allow_missing_keys=False, *args, **kwargs)[source]

Dictionary-based wrapper of monai.transforms.TorchVision for randomized transforms. For deterministic non-randomized transforms of TorchVision use monai.transforms.TorchVisiond.

Note

  • As most of the TorchVision transforms only work for PIL image and PyTorch Tensor, this transform expects input data to be dict of PyTorch Tensors, users can easily call ToTensord transform to convert Numpy to Tensor.

  • This class inherits the Randomizable purely to prevent any dataset caching to skip the transform computation. If the random factor of the underlying torchvision transform is not derived from self.R, the results may not be deterministic. See Also: monai.transforms.Randomizable.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • name (str) – The transform name in TorchVision package.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • args – parameters for the TorchVision transform.

  • kwargs – parameters for the TorchVision transform.

__call__(data)[source]

Call self as a function.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

__init__(keys, name, allow_missing_keys=False, *args, **kwargs)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • name (str) – The transform name in TorchVision package.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • args – parameters for the TorchVision transform.

  • kwargs – parameters for the TorchVision transform.

MapLabelValued

class monai.transforms.MapLabelValued(keys, orig_labels, target_labels, dtype=<class 'numpy.float32'>, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.MapLabelValue.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • orig_labels (Sequence) – original labels that map to others.

  • target_labels (Sequence) – expected label values, 1: 1 map to the orig_labels.

  • dtype (Union[dtype, type, None]) – convert the output data to dtype, default to float32.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, orig_labels, target_labels, dtype=<class 'numpy.float32'>, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • orig_labels (Sequence) – original labels that map to others.

  • target_labels (Sequence) – expected label values, 1: 1 map to the orig_labels.

  • dtype (Union[dtype, type, None]) – convert the output data to dtype, default to float32.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

EnsureTyped

class monai.transforms.EnsureTyped(keys, data_type='tensor', dtype=None, device=None, wrap_sequence=True, allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.EnsureType.

Ensure the input data to be a PyTorch Tensor or numpy array, support: numpy array, PyTorch Tensor, float, int, bool, string and object keep the original. If passing a dictionary, list or tuple, still return dictionary, list or tuple and recursively convert every item to the expected data type if wrap_sequence=False.

Note: Currently, we only convert tensor data to numpy array or scalar number in the inverse operation.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • data_type (str) – target data type to convert, should be “tensor” or “numpy”.

  • dtype (Union[dtype, type, None, dtype]) – target data content type to convert, for example: np.float32, torch.float, etc.

  • device (Optional[device]) – for Tensor data type, specify the target device.

  • wrap_sequence (bool) – if False, then lists will recursively call this function, default to True. E.g., if False, [1, 2] -> [tensor(1), tensor(2)], if True, then [1, 2] -> tensor([1, 2]).

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, data_type='tensor', dtype=None, device=None, wrap_sequence=True, allow_missing_keys=False)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • data_type (str) – target data type to convert, should be “tensor” or “numpy”.

  • dtype (Union[dtype, type, None, dtype]) – target data content type to convert, for example: np.float32, torch.float, etc.

  • device (Optional[device]) – for Tensor data type, specify the target device.

  • wrap_sequence (bool) – if False, then lists will recursively call this function, default to True. E.g., if False, [1, 2] -> [tensor(1), tensor(2)], if True, then [1, 2] -> tensor([1, 2]).

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

inverse(data)[source]

Inverse of __call__.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Any]

IntensityStatsd

class monai.transforms.IntensityStatsd(keys, ops, key_prefix, mask_keys=None, channel_wise=False, meta_keys=None, meta_key_postfix='meta_dict', allow_missing_keys=False)[source]

Dictionary-based wrapper of monai.transforms.IntensityStats. Compute statistics for the intensity values of input image and store into the meta data dictionary. For example: if ops=[lambda x: np.mean(x), “max”] and key_prefix=”orig”, may generate below stats: {“orig_custom_0”: 1.5, “orig_max”: 3.0}.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • ops (Sequence[Union[str, Callable]]) – expected operations to compute statistics for the intensity. if a string, will map to the predefined operations, supported: [“mean”, “median”, “max”, “min”, “std”] mapping to np.nanmean, np.nanmedian, np.nanmax, np.nanmin, np.nanstd. if a callable function, will execute the function on input image.

  • key_prefix (str) – the prefix to combine with ops name to generate the key to store the results in the meta data dictionary. if some ops are callable functions, will use “{key_prefix}_custom_{index}” as the key, where index counts from 0.

  • mask_keys (Union[Collection[Hashable], Hashable, None]) – if not None, specify the mask array for the image to extract only the interested area to compute statistics, mask must have the same shape as the image. it should be a sequence of strings or None, map to the keys.

  • channel_wise (bool) – whether to compute statistics for every channel of input image separately. if True, return a list of values for every operation, default to False.

  • meta_keys (Union[Collection[Hashable], Hashable, None]) – explicitly indicate the key of the corresponding meta data dictionary. used to store the computed statistics to the meta dict. for example, for data with key image, the metadata by default is in image_meta_dict. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the keys. if None, will try to construct meta_keys by key_{meta_key_postfix}.

  • meta_key_postfix (str) – if meta_keys is None, use key_{postfix} to to fetch the meta data according to the key data, default is meta_dict, the meta data is a dictionary object. used to store the computed statistics to the meta dict.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Union[ndarray, Tensor]]

Returns

An updated dictionary version of data by applying the transform.

ToDeviced

class monai.transforms.ToDeviced(keys, device, allow_missing_keys=False, **kwargs)[source]

Dictionary-based wrapper of monai.transforms.ToDevice.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • device (Union[device, str]) – target device to move the Tensor, for example: “cuda:1”.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • kwargs – other args for the PyTorch Tensor.to() API, for more details: https://pytorch.org/docs/stable/generated/torch.Tensor.to.html.

__call__(data)[source]

data often comes from an iteration over an iterable, such as torch.utils.data.Dataset.

To simplify the input validations, this method assumes:

  • data is a Python dictionary,

  • data[key] is a Numpy ndarray, PyTorch Tensor or string, where key is an element of self.keys, the data shape can be:

    1. string data without shape, LoadImaged transform expects file paths,

    2. most of the pre-/post-processing transforms expect: (num_channels, spatial_dim_1[, spatial_dim_2, ...]), except for example: AddChanneld expects (spatial_dim_1[, spatial_dim_2, …]) and AsChannelFirstd expects (spatial_dim_1[, spatial_dim_2, …], num_channels)

  • the channel dimension is often not omitted even if number of channels is one.

Raises

NotImplementedError – When the subclass does not override this method.

Return type

Dict[Hashable, Tensor]

Returns

An updated dictionary version of data by applying the transform.

__init__(keys, device, allow_missing_keys=False, **kwargs)[source]
Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • device (Union[device, str]) – target device to move the Tensor, for example: “cuda:1”.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • kwargs – other args for the PyTorch Tensor.to() API, for more details: https://pytorch.org/docs/stable/generated/torch.Tensor.to.html.

CuCIMd

class monai.transforms.CuCIMd(keys, name, allow_missing_keys=False, *args, **kwargs)[source]

Dictionary-based wrapper of monai.transforms.CuCIM for non-randomized transforms. For randomized transforms of CuCIM use monai.transforms.RandCuCIMd.

Parameters
  • keys (Union[Collection[Hashable], Hashable]) – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • name (str) – The transform name in CuCIM package.

  • allow_missing_keys (bool) – don’t raise exception if key is missing.

  • args – parameters for the CuCIM transform.

  • kwargs – parameters for the CuCIM transform.

Note

CuCIM transforms only work with CuPy arrays, this transform expects input data to be cupy.ndarray. Users can call ToCuPy transform to convert a numpy array or torch tensor to cupy array.

__call__(data)[source]
Parameters

data – Dict[Hashable, cupy.ndarray]

Returns

Dict[Hashable, cupy.ndarray]

RandCuCIMd

class monai.transforms.RandCuCIMd(apply_prob=1.0, *args, **kwargs)[source]

Dictionary-based wrapper of monai.transforms.CuCIM for randomized transforms. For deterministic non-randomized transforms of CuCIM use monai.transforms.CuCIMd.

Parameters
  • keys – keys of the corresponding items to be transformed. See also: monai.transforms.compose.MapTransform

  • name – The transform name in CuCIM package.

  • apply_prob (float) – the probability to apply the transform (default=1.0)

  • allow_missing_keys – don’t raise exception if key is missing.

  • args – parameters for the CuCIM transform.

  • kwargs – parameters for the CuCIM transform.

Note

  • CuCIM transform only work with CuPy arrays, so this transform expects input data to be cupy.ndarray. Users can call ToCuPy transform to convert a numpy array or torch tensor to cupy array.

  • If the cuCIM transform is already randomized the apply_prob argument has nothing to do with the randomness of the underlying cuCIM transform. apply_prob defines if the transform (either randomized or non-randomized) being applied randomly, so it can apply non-randomized transforms randomly but be careful with setting apply_prob to anything than 1.0 when using along with cuCIM’s randomized transforms.

  • If the random factor of the underlying cuCIM transform is not derived from self.R, the results may not be deterministic. See Also: monai.transforms.Randomizable.

__call__(data)[source]
Parameters

data – Dict[Hashable, cupy.ndarray]

Returns

Dict[Hashable, cupy.ndarray]

Transform Adaptors

How to use the adaptor function

The key to using ‘adaptor’ lies in understanding the function that want to adapt. The ‘inputs’ and ‘outputs’ parameters take either strings, lists/tuples of strings or a dictionary mapping strings, depending on call signature of the function being called.

The adaptor function is written to minimise the cognitive load on the caller. There should be a minimal number of cases where the caller has to set anything on the input parameter, and for functions that return a single value, it is only necessary to name the dictionary keyword to which that value is assigned.

Use of outputs

outputs can take either a string, a list/tuple of string or a dict of string to string, depending on what the transform being adapted returns:

  • If the transform returns a single argument, then outputs can be supplied a string that indicates what key to assign the return value to in the dictionary

  • If the transform returns a list/tuple of values, then outputs can be supplied a list/tuple of the same length. The strings in outputs map the return value at the corresponding position to a key in the dictionary

  • If the transform returns a dictionary of values, then outputs must be supplied a dictionary that maps keys in the function’s return dictionary to the dictionary being passed between functions

Note, the caller is free to use a more complex way of specifying the outputs parameter than is required. The following are synonymous and will be treated identically:

# single argument
adaptor(MyTransform(), 'image')
adaptor(MyTransform(), ['image'])
adaptor(MyTransform(), {'image': 'image'})

# multiple arguments
adaptor(MyTransform(), ['image', 'label'])
adaptor(MyTransform(), {'image': 'image', 'label': 'label'})

Use of inputs

inputs can usually be omitted when using adaptor. It is only required when a the function’s parameter names do not match the names in the dictionary that is used to chain transform calls.

class MyTransform1:
    def __call__(self, image):
        # do stuff to image
        return image + 1


class MyTransform2:
    def __call__(self, img_dict):
        # do stuff to image
        img_dict["image"] += 1
        return img_dict


xform = Compose([adaptor(MyTransform1(), "image"), MyTransform2()])
d = {"image": 1}
print(xform(d))

>>> {'image': 3}
class MyTransform3:
    def __call__(self, img_dict):
        # do stuff to image
        img_dict["image"] -= 1
        img_dict["segment"] = img_dict["image"]
        return img_dict


class MyTransform4:
    def __call__(self, img, seg):
        # do stuff to image
        img -= 1
        seg -= 1
        return img, seg


xform = Compose([MyTransform3(), adaptor(MyTransform4(), ["img", "seg"], {"image": "img", "segment": "seg"})])
d = {"image": 1}
print(xform(d))

>>> {'image': 0, 'segment': 0, 'img': -1, 'seg': -1}

Inputs:

  • dictionary in: None | Name maps

  • params in (match): None | Name list | Name maps

  • params in (mismatch): Name maps

  • params & **kwargs (match) : None | Name maps

  • params & **kwargs (mismatch) : Name maps

Outputs:

  • dictionary out: None | Name maps

  • list/tuple out: list/tuple

  • variable out: string

adaptor

monai.transforms.adaptors.adaptor(function, outputs, inputs=None)[source]

apply_alias

monai.transforms.adaptors.apply_alias(fn, name_map)[source]

to_kwargs

monai.transforms.adaptors.to_kwargs(fn)[source]

Utilities

class monai.transforms.utils.Fourier[source]

Helper class storing Fourier mappings

static inv_shift_fourier(k, spatial_dims, n_dims=None)[source]

Applies inverse shift and fourier transform. Only the spatial dimensions are transformed.

Parameters
  • k (Union[ndarray, Tensor]) – K-space data.

  • spatial_dims (int) – Number of spatial dimensions.

Deprecated since version 0.6.0: n_dims is deprecated, use spatial_dims instead.

Returns

Tensor in image space.

Return type

x

static shift_fourier(x, spatial_dims, n_dims=None)[source]

Applies fourier transform and shifts the zero-frequency component to the center of the spectrum. Only the spatial dimensions get transformed.

Parameters
  • x (Union[ndarray, Tensor]) – Image to transform.

  • spatial_dims (int) – Number of spatial dimensions.

Deprecated since version 0.6.0: n_dims is deprecated, use spatial_dims instead.

Returns

k: K-space data.

Return type

Union[ndarray, Tensor]

monai.transforms.utils.allow_missing_keys_mode(transform)[source]

Temporarily set all MapTransforms to not throw an error if keys are missing. After, revert to original states.

Parameters

transform (Union[MapTransform, Compose, Tuple[MapTransform], Tuple[Compose]]) – either MapTransform or a Compose

Example:

data = {"image": np.arange(16, dtype=float).reshape(1, 4, 4)}
t = SpatialPadd(["image", "label"], 10, allow_missing_keys=False)
_ = t(data)  # would raise exception
with allow_missing_keys_mode(t):
    _ = t(data)  # OK!
monai.transforms.utils.compute_divisible_spatial_size(spatial_shape, k)[source]

Compute the target spatial size which should be divisible by k.

Parameters
  • spatial_shape (Sequence[int]) – original spatial shape.

  • k (Union[Sequence[int], int]) – the target k for each spatial dimension. if k is negative or 0, the original size is preserved. if k is an int, the same k be applied to all the input spatial dimensions.

monai.transforms.utils.convert_inverse_interp_mode(trans_info, mode='nearest', align_corners=None)[source]

Change the interpolation mode when inverting spatial transforms, default to “nearest”. This function modifies trans_info’s TraceKeys.EXTRA_INFO.

See also: monai.transform.inverse.InvertibleTransform

Parameters
  • trans_info (List) – transforms inverse information list, contains context of every invertible transform.

  • mode (str) – target interpolation mode to convert, default to “nearest” as it’s usually used to save the mode output.

  • align_corners (Optional[bool]) – target align corner value in PyTorch interpolation API, need to align with the mode.

monai.transforms.utils.convert_pad_mode(dst, mode)[source]

Utility to convert padding mode between numpy array and PyTorch Tensor.

Parameters
  • dst (Union[ndarray, Tensor]) – target data to convert padding mode for, should be numpy array or PyTorch Tensor.

  • mode (Union[NumpyPadMode, PytorchPadMode, str]) – current padding mode.

monai.transforms.utils.copypaste_arrays(src_shape, dest_shape, srccenter, destcenter, dims)[source]

Calculate the slices to copy a sliced area of array in src_shape into array in dest_shape.

The area has dimensions dims (use 0 or None to copy everything in that dimension), the source area is centered at srccenter index in src and copied into area centered at destcenter in dest. The dimensions of the copied area will be clipped to fit within the source and destination arrays so a smaller area may be copied than expected. Return value is the tuples of slice objects indexing the copied area in src, and those indexing the copy area in dest.

Example

src_shape = (6,6)
src = np.random.randint(0,10,src_shape)
dest = np.zeros_like(src)
srcslices, destslices = copypaste_arrays(src_shape, dest.shape, (3, 2),(2, 1),(3, 4))
dest[destslices] = src[srcslices]
print(src)
print(dest)

>>> [[9 5 6 6 9 6]
     [4 3 5 6 1 2]
     [0 7 3 2 4 1]
     [3 0 0 1 5 1]
     [9 4 7 1 8 2]
     [6 6 5 8 6 7]]
    [[0 0 0 0 0 0]
     [7 3 2 4 0 0]
     [0 0 1 5 0 0]
     [4 7 1 8 0 0]
     [0 0 0 0 0 0]
     [0 0 0 0 0 0]]
Return type

Tuple[Tuple[slice, …], Tuple[slice, …]]

monai.transforms.utils.create_control_grid(spatial_shape, spacing, homogeneous=True, dtype=<class 'float'>, device=None, backend=TransformBackends.NUMPY)[source]

control grid with two additional point in each direction

monai.transforms.utils.create_grid(spatial_size, spacing=None, homogeneous=True, dtype=<class 'float'>, device=None, backend=TransformBackends.NUMPY)[source]

compute a spatial_size mesh.

Parameters
  • spatial_size (Sequence[int]) – spatial size of the grid.

  • spacing (Optional[Sequence[float]]) – same len as spatial_size, defaults to 1.0 (dense grid).

  • homogeneous (bool) – whether to make homogeneous coordinates.

  • dtype – output grid data type.

  • device (Optional[device]) – device to compute and store the output (when the backend is “torch”).

  • backend – APIs to use, numpy or torch.

monai.transforms.utils.create_rotate(spatial_dims, radians, device=None, backend=TransformBackends.NUMPY)[source]

create a 2D or 3D rotation matrix

Parameters
  • spatial_dims (int) – {2, 3} spatial rank

  • radians (Union[Sequence[float], float]) – rotation radians when spatial_dims == 3, the radians sequence corresponds to rotation in the 1st, 2nd, and 3rd dim respectively.

  • device (Optional[device]) – device to compute and store the output (when the backend is “torch”).

  • backend – APIs to use, numpy or torch.

Raises
  • ValueError – When radians is empty.

  • ValueError – When spatial_dims is not one of [2, 3].

Return type

Union[ndarray, Tensor]

monai.transforms.utils.create_scale(spatial_dims, scaling_factor, device=None, backend=TransformBackends.NUMPY)[source]

create a scaling matrix

Parameters
  • spatial_dims (int) – spatial rank

  • scaling_factor (Union[Sequence[float], float]) – scaling factors for every spatial dim, defaults to 1.

  • device (Optional[device]) – device to compute and store the output (when the backend is “torch”).

  • backend – APIs to use, numpy or torch.

Return type

Union[ndarray, Tensor]

monai.transforms.utils.create_shear(spatial_dims, coefs, device=None, backend=TransformBackends.NUMPY)[source]

create a shearing matrix

Parameters
  • spatial_dims (int) – spatial rank

  • coefs (Union[Sequence[float], float]) –

    shearing factors, a tuple of 2 floats for 2D, a tuple of 6 floats for 3D), take a 3D affine as example:

    [
        [1.0, coefs[0], coefs[1], 0.0],
        [coefs[2], 1.0, coefs[3], 0.0],
        [coefs[4], coefs[5], 1.0, 0.0],
        [0.0, 0.0, 0.0, 1.0],
    ]
    

  • device (Optional[device]) – device to compute and store the output (when the backend is “torch”).

  • backend – APIs to use, numpy or torch.

Raises

NotImplementedError – When spatial_dims is not one of [2, 3].

Return type

Union[ndarray, Tensor]

monai.transforms.utils.create_translate(spatial_dims, shift, device=None, backend=TransformBackends.NUMPY)[source]

create a translation matrix

Parameters
  • spatial_dims (int) – spatial rank

  • shift (Union[Sequence[float], float]) – translate pixel/voxel for every spatial dim, defaults to 0.

  • device (Optional[device]) – device to compute and store the output (when the backend is “torch”).

  • backend – APIs to use, numpy or torch.

Return type

Union[ndarray, Tensor]

monai.transforms.utils.equalize_hist(img, mask=None, num_bins=256, min=0, max=255)[source]

Utility to equalize input image based on the histogram. If skimage installed, will leverage skimage.exposure.histogram, otherwise, use np.histogram instead.

Parameters
  • img (ndarray) – input image to equalize.

  • mask (Optional[ndarray]) – if provided, must be ndarray of bools or 0s and 1s, and same shape as image. only points at which mask==True are used for the equalization.

  • num_bins (int) – number of the bins to use in histogram, default to 256. for more details: https://numpy.org/doc/stable/reference/generated/numpy.histogram.html.

  • min (int) – the min value to normalize input image, default to 0.

  • max (int) – the max value to normalize input image, default to 255.

Return type

ndarray

monai.transforms.utils.extreme_points_to_image(points, label, sigma=0.0, rescale_min=- 1.0, rescale_max=1.0)[source]

Please refer to monai.transforms.AddExtremePointsChannel for the usage.

Applies a gaussian filter to the extreme points image. Then the pixel values in points image are rescaled to range [rescale_min, rescale_max].

Parameters
  • points (List[Tuple[int, …]]) – Extreme points of the object/organ.

  • label (Union[ndarray, Tensor]) – label image to get extreme points from. Shape must be (1, spatial_dim1, [, spatial_dim2, …]). Doesn’t support one-hot labels.

  • sigma (Union[Sequence[float], float, Sequence[Tensor], Tensor]) – if a list of values, must match the count of spatial dimensions of input data, and apply every value in the list to 1 spatial dimension. if only 1 value provided, use it for all spatial dimensions.

  • rescale_min (float) – minimum value of output data.

  • rescale_max (float) – maximum value of output data.

Return type

Tensor

monai.transforms.utils.fill_holes(img_arr, applied_labels=None, connectivity=None)[source]

Fill the holes in the provided image.

The label 0 will be treated as background and the enclosed holes will be set to the neighboring class label. What is considered to be an enclosed hole is defined by the connectivity. Holes on the edge are always considered to be open (not enclosed).

Note

The performance of this method heavily depends on the number of labels. It is a bit faster if the list of applied_labels is provided. Limiting the number of applied_labels results in a big decrease in processing time.

If the image is one-hot-encoded, then the applied_labels need to match the channel index.

Parameters
  • img_arr (ndarray) – numpy array of shape [C, spatial_dim1[, spatial_dim2, …]].

  • applied_labels (Optional[Iterable[int]]) – Labels for which to fill holes. Defaults to None, that is filling holes for all labels.

  • connectivity (Optional[int]) – Maximum number of orthogonal hops to consider a pixel/voxel as a neighbor. Accepted values are ranging from 1 to input.ndim. Defaults to a full connectivity of input.ndim.

Return type

ndarray

Returns

numpy array of shape [C, spatial_dim1[, spatial_dim2, …]].

monai.transforms.utils.generate_label_classes_crop_centers(spatial_size, num_samples, label_spatial_shape, indices, ratios=None, rand_state=None, allow_smaller=False)[source]

Generate valid sample locations based on the specified ratios of label classes. Valid: samples sitting entirely within image, expected input shape: [C, H, W, D] or [C, H, W]

Parameters
  • spatial_size (Union[Sequence[int], int]) – spatial size of the ROIs to be sampled.

  • num_samples (int) – total sample centers to be generated.

  • label_spatial_shape (Sequence[int]) – spatial shape of the original label data to unravel selected centers.

  • indices (Sequence[Union[ndarray, Tensor]]) – sequence of pre-computed foreground indices of every class in 1 dimension.

  • ratios (Optional[List[Union[float, int]]]) – ratios of every class in the label to generate crop centers, including background class. if None, every class will have the same ratio to generate crop centers.

  • rand_state (Optional[RandomState]) – numpy randomState object to align with other modules.

  • allow_smaller (bool) – if False, an exception will be raised if the image is smaller than the requested ROI in any dimension. If True, any smaller dimensions will be set to match the cropped size (i.e., no cropping in that dimension).

Return type

List[List[int]]

monai.transforms.utils.generate_pos_neg_label_crop_centers(spatial_size, num_samples, pos_ratio, label_spatial_shape, fg_indices, bg_indices, rand_state=None, allow_smaller=False)[source]

Generate valid sample locations based on the label with option for specifying foreground ratio Valid: samples sitting entirely within image, expected input shape: [C, H, W, D] or [C, H, W]

Parameters
  • spatial_size (Union[Sequence[int], int]) – spatial size of the ROIs to be sampled.

  • num_samples (int) – total sample centers to be generated.

  • pos_ratio (float) – ratio of total locations generated that have center being foreground.

  • label_spatial_shape (Sequence[int]) – spatial shape of the original label data to unravel selected centers.

  • fg_indices (Union[ndarray, Tensor]) – pre-computed foreground indices in 1 dimension.

  • bg_indices (Union[ndarray, Tensor]) – pre-computed background indices in 1 dimension.

  • rand_state (Optional[RandomState]) – numpy randomState object to align with other modules.

  • allow_smaller (bool) – if False, an exception will be raised if the image is smaller than the requested ROI in any dimension. If True, any smaller dimensions will be set to match the cropped size (i.e., no cropping in that dimension).

Raises
  • ValueError – When the proposed roi is larger than the image.

  • ValueError – When the foreground and background indices lengths are 0.

Return type

List[List[int]]

monai.transforms.utils.generate_spatial_bounding_box(img, select_fn=<function is_positive>, channel_indices=None, margin=0)[source]

generate the spatial bounding box of foreground in the image with start-end positions. Users can define arbitrary function to select expected foreground from the whole image or specified channels. And it can also add margin to every dim of the bounding box. The output format of the coordinates is:

[1st_spatial_dim_start, 2nd_spatial_dim_start, …, Nth_spatial_dim_start], [1st_spatial_dim_end, 2nd_spatial_dim_end, …, Nth_spatial_dim_end]

The bounding boxes edges are aligned with the input image edges. This function returns [-1, -1, …], [-1, -1, …] if there’s no positive intensity.

Parameters
  • img (Union[ndarray, Tensor]) – source image to generate bounding box from.

  • select_fn (Callable) – function to select expected foreground, default is to select values > 0.

  • channel_indices (Union[Iterable[int], int, None]) – if defined, select foreground only on the specified channels of image. if None, select foreground on the whole image.

  • margin (Union[Sequence[int], int]) – add margin value to spatial dims of the bounding box, if only 1 value provided, use it for all dims.

Return type

Tuple[List[int], List[int]]

monai.transforms.utils.get_extreme_points(img, rand_state=None, background=0, pert=0.0)[source]

Generate extreme points from an image. These are used to generate initial segmentation for annotation models. An optional perturbation can be passed to simulate user clicks.

Parameters
  • img (Union[ndarray, Tensor]) – Image to generate extreme points from. Expected Shape is (spatial_dim1, [, spatial_dim2, ...]).

  • rand_state (Optional[RandomState]) – np.random.RandomState object used to select random indices.

  • background (int) – Value to be consider as background, defaults to 0.

  • pert (float) – Random perturbation amount to add to the points, defaults to 0.0.

Return type

List[Tuple[int, …]]

Returns

A list of extreme points, its length is equal to 2 * spatial dimension of input image. The output format of the coordinates is:

[1st_spatial_dim_min, 1st_spatial_dim_max, 2nd_spatial_dim_min, …, Nth_spatial_dim_max]

Raises

ValueError – When the input image does not have any foreground pixel.

monai.transforms.utils.get_largest_connected_component_mask(img, connectivity=None)[source]

Gets the largest connected component mask of an image.

Parameters
  • img (Union[ndarray, Tensor]) – Image to get largest connected component from. Shape is (spatial_dim1 [, spatial_dim2, …])

  • connectivity (Optional[int]) – Maximum number of orthogonal hops to consider a pixel/voxel as a neighbor. Accepted values are ranging from 1 to input.ndim. If None, a full connectivity of input.ndim is used.

Return type

Union[ndarray, Tensor]

monai.transforms.utils.get_number_image_type_conversions(transform, test_data, key=None)[source]

Get the number of times that the data need to be converted (e.g., numpy to torch). Conversions between different devices are also counted (e.g., CPU to GPU).

Parameters
  • transform (Compose) – composed transforms to be tested

  • test_data (Any) – data to be used to count the number of conversions

  • key (Optional[Hashable]) – if using dictionary transforms, this key will be used to check the number of conversions.

Return type

int

monai.transforms.utils.get_transform_backends()[source]

Get the backends of all MONAI transforms.

Returns

Dictionary, where each key is a transform, and its corresponding values are a boolean list, stating whether that transform supports (1) torch.Tensor, and (2) np.ndarray as input without needing to convert.

monai.transforms.utils.img_bounds(img)[source]

Returns the minimum and maximum indices of non-zero lines in axis 0 of img, followed by that for axis 1.

monai.transforms.utils.in_bounds(x, y, margin, maxx, maxy)[source]

Returns True if (x,y) is within the rectangle (margin, margin, maxx-margin, maxy-margin).

Return type

bool

monai.transforms.utils.is_empty(img)[source]

Returns True if img is empty, that is its maximum value is not greater than its minimum.

Return type

bool

monai.transforms.utils.is_positive(img)[source]

Returns a boolean version of img where the positive values are converted into True, the other values are False.

monai.transforms.utils.map_binary_to_indices(label, image=None, image_threshold=0.0)[source]

Compute the foreground and background of input label data, return the indices after fattening. For example: label = np.array([[[0, 1, 1], [1, 0, 1], [1, 1, 0]]]) foreground indices = np.array([1, 2, 3, 5, 6, 7]) and background indices = np.array([0, 4, 8])

Parameters
  • label (Union[ndarray, Tensor]) – use the label data to get the foreground/background information.

  • image (Union[ndarray, Tensor, None]) – if image is not None, use label = 0 & image > image_threshold to define background. so the output items will not map to all the voxels in the label.

  • image_threshold (float) – if enabled image, use image > image_threshold to determine the valid image content area and select background only in this area.

Return type

Tuple[Union[ndarray, Tensor], Union[ndarray, Tensor]]

monai.transforms.utils.map_classes_to_indices(label, num_classes=None, image=None, image_threshold=0.0)[source]

Filter out indices of every class of the input label data, return the indices after fattening. It can handle both One-Hot format label and Argmax format label, must provide num_classes for Argmax label.

For example: label = np.array([[[0, 1, 2], [2, 0, 1], [1, 2, 0]]]) and num_classes=3, will return a list which contains the indices of the 3 classes: [np.array([0, 4, 8]), np.array([1, 5, 6]), np.array([2, 3, 7])]

Parameters
  • label (Union[ndarray, Tensor]) – use the label data to get the indices of every class.

  • num_classes (Optional[int]) – number of classes for argmax label, not necessary for One-Hot label.

  • image (Union[ndarray, Tensor, None]) – if image is not None, only return the indices of every class that are within the valid region of the image (image > image_threshold).

  • image_threshold (float) – if enabled image, use image > image_threshold to determine the valid image content area and select class indices only in this area.

Return type

List[Union[ndarray, Tensor]]

monai.transforms.utils.map_spatial_axes(img_ndim, spatial_axes=None, channel_first=True)[source]

Utility to map the spatial axes to real axes in channel first/last shape. For example: If channel_first is True, and img has 3 spatial dims, map spatial axes to real axes as below: None -> [1, 2, 3] [0, 1] -> [1, 2] [0, -1] -> [1, -1] If channel_first is False, and img has 3 spatial dims, map spatial axes to real axes as below: None -> [0, 1, 2] [0, 1] -> [0, 1] [0, -1] -> [0, -2]

Parameters
  • img_ndim (int) – dimension number of the target image.

  • spatial_axes (Union[Sequence[int], int, None]) – spatial axes to be converted, default is None. The default None will convert to all the spatial axes of the image. If axis is negative it counts from the last to the first axis. If axis is a tuple of ints.

  • channel_first (bool) – the image data is channel first or channel last, default to channel first.

Return type

List[int]

monai.transforms.utils.print_transform_backends()[source]

Prints a list of backends of all MONAI transforms.

monai.transforms.utils.rand_choice(prob=0.5)[source]

Returns True if a randomly chosen number is less than or equal to prob, by default this is a 50/50 chance.

Return type

bool

monai.transforms.utils.rescale_array(arr, minv=0.0, maxv=1.0, dtype=<class 'numpy.float32'>)[source]

Rescale the values of numpy array arr to be from minv to maxv. If either minv or maxv is None, it returns (a - min_a) / (max_a - min_a).

Parameters
  • arr (Union[ndarray, Tensor]) – input array to rescale.

  • minv (Optional[float]) – minimum value of target rescaled array.

  • maxv (Optional[float]) – maxmum value of target rescaled array.

  • dtype (Union[dtype, type, None, dtype]) – if not None, convert input array to dtype before computation.

Return type

Union[ndarray, Tensor]

monai.transforms.utils.rescale_array_int_max(arr, dtype=<class 'numpy.uint16'>)[source]

Rescale the array arr to be between the minimum and maximum values of the type dtype.

Return type

ndarray

monai.transforms.utils.rescale_instance_array(arr, minv=0.0, maxv=1.0, dtype=<class 'numpy.float32'>)[source]

Rescale each array slice along the first dimension of arr independently.

Return type

ndarray

monai.transforms.utils.resize_center(img, *resize_dims, fill_value=0.0, inplace=True)[source]

Resize img by cropping or expanding the image from the center. The resize_dims values are the output dimensions (or None to use original dimension of img). If a dimension is smaller than that of img then the result will be cropped and if larger padded with zeros, in both cases this is done relative to the center of img. The result is a new image with the specified dimensions and values from img copied into its center.

monai.transforms.utils.weighted_patch_samples(spatial_size, w, n_samples=1, r_state=None)[source]

Computes n_samples of random patch sampling locations, given the sampling weight map w and patch spatial_size.

Parameters
  • spatial_size (Union[int, Sequence[int]]) – length of each spatial dimension of the patch.

  • w (Union[ndarray, Tensor]) – weight map, the weights must be non-negative. each element denotes a sampling weight of the spatial location. 0 indicates no sampling. The weight map shape is assumed (spatial_dim_0, spatial_dim_1, ..., spatial_dim_n).

  • n_samples (int) – number of patch samples

  • r_state (Optional[RandomState]) – a random state container

Return type

List

Returns

a list of n_samples N-D integers representing the spatial sampling location of patches.

monai.transforms.utils.zero_margins(img, margin)[source]

Returns True if the values within margin indices of the edges of img in dimensions 1 and 2 are 0.

Return type

bool

monai.transforms.utils_pytorch_numpy_unification.any_np_pt(x, axis)[source]

np.any with equivalent implementation for torch.

For pytorch, convert to boolean for compatibility with older versions.

Parameters
  • x (Union[ndarray, Tensor]) – input array/tensor

  • axis (Union[int, Sequence[int]]) – axis to perform any over

Returns

Return a contiguous flattened array/tensor.

monai.transforms.utils_pytorch_numpy_unification.clip(a, a_min, a_max)[source]

np.clip with equivalent implementation for torch.

Return type

Union[ndarray, Tensor]

monai.transforms.utils_pytorch_numpy_unification.concatenate(to_cat, axis=0, out=None)[source]

np.concatenate with equivalent implementation for torch (torch.cat).

Return type

Union[ndarray, Tensor]

monai.transforms.utils_pytorch_numpy_unification.cumsum(a, axis=None)[source]

np.cumsum with equivalent implementation for torch.

monai.transforms.utils_pytorch_numpy_unification.floor_divide(a, b)[source]

np.floor_divide with equivalent implementation for torch.

As of pt1.8, use torch.div(…, rounding_mode=”floor”), and before that, use torch.floor_divide.

Parameters
  • a (Union[ndarray, Tensor]) – first array/tensor

  • b – scalar to divide by

Return type

Union[ndarray, Tensor]

Returns

Element-wise floor division between two arrays/tensors.

monai.transforms.utils_pytorch_numpy_unification.in1d(x, y)[source]

np.in1d with equivalent implementation for torch.

monai.transforms.utils_pytorch_numpy_unification.isfinite(x)[source]

np.isfinite with equivalent implementation for torch.

monai.transforms.utils_pytorch_numpy_unification.isnan(x)[source]

np.isnan with equivalent implementation for torch.

Parameters

x (Union[ndarray, Tensor]) – array/tensor

monai.transforms.utils_pytorch_numpy_unification.maximum(a, b)[source]

np.maximum with equivalent implementation for torch.

torch.maximum only available from pt>1.6, else use torch.stack and torch.max.

Parameters
  • a (Union[ndarray, Tensor]) – first array/tensor

  • b (Union[ndarray, Tensor]) – second array/tensor

Return type

Union[ndarray, Tensor]

Returns

Element-wise maximum between two arrays/tensors.

monai.transforms.utils_pytorch_numpy_unification.moveaxis(x, src, dst)[source]

moveaxis for pytorch and numpy, using permute for pytorch ver < 1.8

Return type

Union[ndarray, Tensor]

monai.transforms.utils_pytorch_numpy_unification.nonzero(x)[source]

np.nonzero with equivalent implementation for torch.

Parameters

x (Union[ndarray, Tensor]) – array/tensor

Returns

Index unravelled for given shape

monai.transforms.utils_pytorch_numpy_unification.percentile(x, q)[source]

np.percentile with equivalent implementation for torch.

Pytorch uses quantile, but this functionality is only available from v1.7. For earlier methods, we calculate it ourselves. This doesn’t do interpolation, so is the equivalent of numpy.percentile(..., interpolation="nearest").

Parameters
  • x (Union[ndarray, Tensor]) – input data

  • q – percentile to compute (should in range 0 <= q <= 100)

Return type

Union[ndarray, Tensor, float, int]

Returns

Resulting value (scalar)

monai.transforms.utils_pytorch_numpy_unification.ravel(x)[source]

np.ravel with equivalent implementation for torch.

Parameters

x (Union[ndarray, Tensor]) – array/tensor to ravel

Returns

Return a contiguous flattened array/tensor.

monai.transforms.utils_pytorch_numpy_unification.repeat(a, repeats, axis=None)[source]

np.repeat with equivalent implementation for torch (repeat_interleave).

monai.transforms.utils_pytorch_numpy_unification.unravel_index(idx, shape)[source]

np.unravel_index with equivalent implementation for torch.

Parameters
  • idx – index to unravel

  • shape – shape of array/tensor

Returns

Index unravelled for given shape

monai.transforms.utils_pytorch_numpy_unification.unravel_indices(idx, shape)[source]

Computing unravel coordinates from indices.

Parameters
  • idx – a sequence of indices to unravel

  • shape – shape of array/tensor

Returns

Stacked indices unravelled for given shape

monai.transforms.utils_pytorch_numpy_unification.where(condition, x=None, y=None)[source]

Note that torch.where may convert y.dtype to x.dtype.

Return type

Union[ndarray, Tensor]