Source code for monai.losses.dice

# Copyright 2020 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings
from typing import Callable, Union

import torch
from torch.nn.modules.loss import _Loss

from monai.networks import one_hot
from monai.utils import LossReduction, Weight


[docs]class DiceLoss(_Loss): """ Compute average Dice loss between two tensors. It can support both multi-classes and multi-labels tasks. Input logits `input` (BNHW[D] where N is number of classes) is compared with ground truth `target` (BNHW[D]). Axis N of `input` is expected to have logit predictions for each class rather than being image channels, while the same axis of `target` can be 1 or N (one-hot format). The `smooth` parameter is a value added to the intersection and union components of the inter-over-union calculation to smooth results and prevent divide by 0, this value should be small. The `include_background` class attribute can be set to False for an instance of DiceLoss to exclude the first category (channel index 0) which is by convention assumed to be background. If the non-background segmentations are small compared to the total image size they can get overwhelmed by the signal from the background so excluding it in such cases helps convergence. Milletari, F. et. al. (2016) V-Net: Fully Convolutional Neural Networks forVolumetric Medical Image Segmentation, 3DV, 2016. """ def __init__( self, include_background: bool = True, to_onehot_y: bool = False, sigmoid: bool = False, softmax: bool = False, squared_pred: bool = False, jaccard: bool = False, reduction: Union[LossReduction, str] = LossReduction.MEAN, ): """ Args: include_background: If False channel index 0 (background category) is excluded from the calculation. to_onehot_y: whether to convert `y` into the one-hot format. Defaults to False. sigmoid: If True, apply a sigmoid function to the prediction. softmax: If True, apply a softmax function to the prediction. squared_pred: use squared versions of targets and predictions in the denominator or not. jaccard: compute Jaccard Index (soft IoU) instead of dice or not. reduction: {``"none"``, ``"mean"``, ``"sum"``} Specifies the reduction to apply to the output. Defaults to ``"mean"``. - ``"none"``: no reduction will be applied. - ``"mean"``: the sum of the output will be divided by the number of elements in the output. - ``"sum"``: the output will be summed. Raises: ValueError: reduction={reduction} is invalid. Valid options are: none, mean or sum. ValueError: sigmoid=True and softmax=True are not compatible. """ super().__init__(reduction=LossReduction(reduction)) if sigmoid and softmax: raise ValueError("sigmoid=True and softmax=True are not compatible.") self.include_background = include_background self.to_onehot_y = to_onehot_y self.sigmoid = sigmoid self.softmax = softmax self.squared_pred = squared_pred self.jaccard = jaccard
[docs] def forward(self, input: torch.Tensor, target: torch.Tensor, smooth: float = 1e-5): """ Args: input (tensor): the shape should be BNH[WD]. target (tensor): the shape should be BNH[WD]. smooth: a small constant to avoid nan. Raises: ValueError: reduction={self.reduction} is invalid. """ if self.sigmoid: input = torch.sigmoid(input) n_pred_ch = input.shape[1] if n_pred_ch == 1: if self.softmax: warnings.warn("single channel prediction, `softmax=True` ignored.") if self.to_onehot_y: warnings.warn("single channel prediction, `to_onehot_y=True` ignored.") if not self.include_background: warnings.warn("single channel prediction, `include_background=False` ignored.") else: if self.softmax: input = torch.softmax(input, 1) if self.to_onehot_y: target = one_hot(target, num_classes=n_pred_ch) if not self.include_background: # if skipping background, removing first channel target = target[:, 1:] input = input[:, 1:] assert ( target.shape == input.shape ), f"ground truth has differing shape ({target.shape}) from input ({input.shape})" # reducing only spatial dimensions (not batch nor channels) reduce_axis = list(range(2, len(input.shape))) intersection = torch.sum(target * input, dim=reduce_axis) if self.squared_pred: target = torch.pow(target, 2) input = torch.pow(input, 2) ground_o = torch.sum(target, dim=reduce_axis) pred_o = torch.sum(input, dim=reduce_axis) denominator = ground_o + pred_o if self.jaccard: denominator = 2.0 * (denominator - intersection) f = 1.0 - (2.0 * intersection + smooth) / (denominator + smooth) if self.reduction == LossReduction.MEAN: f = torch.mean(f) # the batch and channel average elif self.reduction == LossReduction.SUM: f = torch.sum(f) # sum over the batch and channel dims elif self.reduction == LossReduction.NONE: pass # returns [N, n_classes] losses else: raise ValueError(f"reduction={self.reduction} is invalid.") return f
[docs]class MaskedDiceLoss(DiceLoss): """ Same as DiceLoss, but accepts a binary mask ([0,1]) indicating a region over which to compute the dice. """
[docs] def forward(self, input: torch.Tensor, target: torch.Tensor, smooth: float = 1e-5, mask: torch.Tensor = None): """ Args: input (tensor): the shape should be BNH[WD]. target (tensor): the shape should be BNH[WD]. smooth: a small constant to avoid nan. mask (tensor): (optional) the shape should B1H[WD] or 11H[WD]. """ if mask is not None: # checking if mask is of proper shape assert input.dim() == mask.dim(), f"dim of input ({input.shape}) is different from mask ({mask.shape})" assert ( input.shape[0] == mask.shape[0] or mask.shape[0] == 1 ), f" batch size of mask ({mask.shape}) must be 1 or equal to input ({input.shape})" if target.dim() > 1: assert mask.shape[1] == 1, f"mask ({mask.shape}) must have only 1 channel" assert ( input.shape[2:] == mask.shape[2:] ), f"spatial size of input ({input.shape}) is different from mask ({mask.shape})" input = input * mask target = target * mask return super().forward(input=input, target=target, smooth=smooth)
[docs]class GeneralizedDiceLoss(_Loss): """ Compute the generalised Dice loss defined in: Sudre, C. et. al. (2017) Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations. DLMIA 2017. Adapted from: https://github.com/NifTK/NiftyNet/blob/v0.6.0/niftynet/layer/loss_segmentation.py#L279 """ def __init__( self, include_background: bool = True, to_onehot_y: bool = False, sigmoid: bool = False, softmax: bool = False, w_type: Union[Weight, str] = Weight.SQUARE, reduction: Union[LossReduction, str] = LossReduction.MEAN, ): """ Args: include_background: If False channel index 0 (background category) is excluded from the calculation. to_onehot_y: whether to convert `y` into the one-hot format. Defaults to False. sigmoid: If True, apply a sigmoid function to the prediction. softmax: If True, apply a softmax function to the prediction. w_type: {``"square"``, ``"simple"``, ``"uniform"``} Type of function to transform ground truth volume to a weight factor. Defaults to ``"square"``. reduction: {``"none"``, ``"mean"``, ``"sum"``} Specifies the reduction to apply to the output. Defaults to ``"mean"``. - ``"none"``: no reduction will be applied. - ``"mean"``: the sum of the output will be divided by the number of elements in the output. - ``"sum"``: the output will be summed. Raises: ValueError: reduction={reduction} is invalid. Valid options are: none, mean or sum. ValueError: sigmoid=True and softmax=True are not compatible. """ super().__init__(reduction=LossReduction(reduction)) self.include_background = include_background self.to_onehot_y = to_onehot_y if sigmoid and softmax: raise ValueError("sigmoid=True and softmax=True are not compatible.") self.sigmoid = sigmoid self.softmax = softmax w_type = Weight(w_type) self.w_func: Callable = torch.ones_like if w_type == Weight.SIMPLE: self.w_func = torch.reciprocal elif w_type == Weight.SQUARE: self.w_func = lambda x: torch.reciprocal(x * x)
[docs] def forward(self, input: torch.Tensor, target: torch.Tensor, smooth: float = 1e-5): """ Args: input (tensor): the shape should be BNH[WD]. target (tensor): the shape should be BNH[WD]. smooth: a small constant to avoid nan. Raises: ValueError: reduction={self.reduction} is invalid. """ if self.sigmoid: input = torch.sigmoid(input) n_pred_ch = input.shape[1] if n_pred_ch == 1: if self.softmax: warnings.warn("single channel prediction, `softmax=True` ignored.") if self.to_onehot_y: warnings.warn("single channel prediction, `to_onehot_y=True` ignored.") if not self.include_background: warnings.warn("single channel prediction, `include_background=False` ignored.") else: if self.softmax: input = torch.softmax(input, 1) if self.to_onehot_y: target = one_hot(target, n_pred_ch) if not self.include_background: # if skipping background, removing first channel target = target[:, 1:] input = input[:, 1:] assert ( target.shape == input.shape ), f"ground truth has differing shape ({target.shape}) from input ({input.shape})" # reducing only spatial dimensions (not batch nor channels) reduce_axis = list(range(2, len(input.shape))) intersection = torch.sum(target * input, reduce_axis) ground_o = torch.sum(target, reduce_axis) pred_o = torch.sum(input, reduce_axis) denominator = ground_o + pred_o w = self.w_func(ground_o.float()) for b in w: infs = torch.isinf(b) b[infs] = 0.0 b[infs] = torch.max(b) f = 1.0 - (2.0 * (intersection * w).sum(1) + smooth) / ((denominator * w).sum(1) + smooth) if self.reduction == LossReduction.MEAN: f = torch.mean(f) # the batch and channel average elif self.reduction == LossReduction.SUM: f = torch.sum(f) # sum over the batch and channel dims elif self.reduction == LossReduction.NONE: pass # returns [N, n_classes] losses else: raise ValueError(f"reduction={self.reduction} is invalid.") return f
dice = Dice = DiceLoss generalized_dice = GeneralizedDiceLoss