Source code for monai.inferers.utils

# Copyright 2020 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Callable, Union

import torch
import torch.nn.functional as F
from monai.data.utils import compute_importance_map, dense_patch_slices, get_valid_patch_size
from monai.utils import BlendMode, PytorchPadMode, fall_back_tuple


[docs]def sliding_window_inference( inputs: torch.Tensor, roi_size, sw_batch_size: int, predictor: Callable, overlap: float = 0.25, mode: Union[BlendMode, str] = BlendMode.CONSTANT, padding_mode: Union[PytorchPadMode, str] = PytorchPadMode.CONSTANT, cval=0, ): """ Sliding window inference on `inputs` with `predictor`. When roi_size is larger than the inputs' spatial size, the input image are padded during inference. To maintain the same spatial sizes, the output image will be cropped to the original input size. Args: inputs: input image to be processed (assuming NCHW[D]) roi_size (list, tuple): the spatial window size for inferences. When its components have None or non-positives, the corresponding inputs dimension will be used. if the components of the `roi_size` are non-positive values, the transform will use the corresponding components of img size. For example, `roi_size=(32, -1)` will be adapted to `(32, 64)` if the second spatial dimension size of img is `64`. sw_batch_size: the batch size to run window slices. predictor: given input tensor `patch_data` in shape NCHW[D], `predictor(patch_data)` should return a prediction with the same spatial shape and batch_size, i.e. NMHW[D]; where HW[D] represents the patch spatial size, M is the number of output channels, N is `sw_batch_size`. overlap: Amount of overlap between scans. mode: {``"constant"``, ``"gaussian"``} How to blend output of overlapping windows. Defaults to ``"constant"``. - ``"constant``": gives equal weight to all predictions. - ``"gaussian``": gives less weight to predictions on edges of windows. padding_mode: {``"constant"``, ``"reflect"``, ``"replicate"``, ``"circular"``} Padding mode when ``roi_size`` is larger than inputs. Defaults to ``"constant"`` See also: https://pytorch.org/docs/stable/nn.functional.html#pad cval: fill value for 'constant' padding mode. Default: 0 Raises: NotImplementedError: inputs must have batch_size=1. Note: - input must be channel-first and have a batch dim, support both spatial 2D and 3D. - currently only supports `inputs` with batch_size=1. """ num_spatial_dims = len(inputs.shape) - 2 assert 0 <= overlap < 1, "overlap must be >= 0 and < 1." # determine image spatial size and batch size # Note: all input images must have the same image size and batch size image_size_ = list(inputs.shape[2:]) batch_size = inputs.shape[0] # TODO: Enable batch sizes > 1 in future if batch_size > 1: raise NotImplementedError("inputs must have batch_size=1.") roi_size = fall_back_tuple(roi_size, image_size_) # in case that image size is smaller than roi size image_size = tuple(max(image_size_[i], roi_size[i]) for i in range(num_spatial_dims)) pad_size = [] for k in range(len(inputs.shape) - 1, 1, -1): diff = max(roi_size[k - 2] - inputs.shape[k], 0) half = diff // 2 pad_size.extend([half, diff - half]) inputs = F.pad(inputs, pad=pad_size, mode=PytorchPadMode(padding_mode).value, value=cval) scan_interval = _get_scan_interval(image_size, roi_size, num_spatial_dims, overlap) # Store all slices in list slices = dense_patch_slices(image_size, roi_size, scan_interval) slice_batches = [] for slice_index in range(0, len(slices), sw_batch_size): slice_index_range = range(slice_index, min(slice_index + sw_batch_size, len(slices))) input_slices = [] for curr_index in slice_index_range: curr_slice = slices[curr_index] if len(curr_slice) == 3: input_slices.append(inputs[0, :, curr_slice[0], curr_slice[1], curr_slice[2]]) else: input_slices.append(inputs[0, :, curr_slice[0], curr_slice[1]]) slice_batches.append(torch.stack(input_slices)) # Perform predictions output_rois = list() for data in slice_batches: seg_prob = predictor(data) # batched patch segmentation output_rois.append(seg_prob) # stitching output image output_classes = output_rois[0].shape[1] output_shape = [batch_size, output_classes] + list(image_size) # Create importance map importance_map = compute_importance_map(get_valid_patch_size(image_size, roi_size), mode=mode, device=inputs.device) # allocate memory to store the full output and the count for overlapping parts output_image = torch.zeros(output_shape, dtype=torch.float32, device=inputs.device) count_map = torch.zeros(output_shape, dtype=torch.float32, device=inputs.device) for window_id, slice_index in enumerate(range(0, len(slices), sw_batch_size)): slice_index_range = range(slice_index, min(slice_index + sw_batch_size, len(slices))) # store the result in the proper location of the full output. Apply weights from importance map. for curr_index in slice_index_range: curr_slice = slices[curr_index] if len(curr_slice) == 3: output_image[0, :, curr_slice[0], curr_slice[1], curr_slice[2]] += ( importance_map * output_rois[window_id][curr_index - slice_index, :] ) count_map[0, :, curr_slice[0], curr_slice[1], curr_slice[2]] += importance_map else: output_image[0, :, curr_slice[0], curr_slice[1]] += ( importance_map * output_rois[window_id][curr_index - slice_index, :] ) count_map[0, :, curr_slice[0], curr_slice[1]] += importance_map # account for any overlapping sections output_image /= count_map if num_spatial_dims == 3: return output_image[ ..., pad_size[4] : image_size_[0] + pad_size[4], pad_size[2] : image_size_[1] + pad_size[2], pad_size[0] : image_size_[2] + pad_size[0], ] return output_image[ ..., pad_size[2] : image_size_[0] + pad_size[2], pad_size[0] : image_size_[1] + pad_size[0] ] # 2D
def _get_scan_interval(image_size, roi_size, num_spatial_dims: int, overlap: float): assert len(image_size) == num_spatial_dims, "image coord different from spatial dims." assert len(roi_size) == num_spatial_dims, "roi coord different from spatial dims." scan_interval = [] for i in range(num_spatial_dims): if roi_size[i] == image_size[i]: scan_interval.append(int(roi_size[i])) else: # scan interval is (1-overlap)*roi_size scan_interval.append(int(roi_size[i] * (1 - overlap))) return tuple(scan_interval)