monailabel.tasks.infer.bundle module¶
- class monailabel.tasks.infer.bundle.BundleInferTask(path, conf, const=None, type='', pre_filter=None, post_filter=[<class 'monai.transforms.io.dictionary.SaveImaged'>], extend_load_image=True, add_post_restore=True, dropout=0.0, load_strict=False, **kwargs)[source]¶
Bases:
monailabel.tasks.infer.basic_infer.BasicInferTask
This provides Inference Engine for Monai Bundle.
- Parameters
path (
str
) – Model File Path. Supports multiple paths to support versions (Last item will be picked as latest)network – Model Network (e.g. monai.networks.xyz). None in case if you use TorchScript (torch.jit).
type (
Union
[str
,InferType
]) – Type of Infer (segmentation, deepgrow etc..)labels – Labels associated to this Infer
dimension – Input dimension
description – Description
model_state_dict – Key for loading the model state from checkpoint
input_key – Input key for running inference
output_label_key – Output key for storing result/label of inference
output_json_key – Output key for storing result/label of inference
config – K,V pairs to be part of user config
load_strict – Load model in strict mode
roi_size – ROI size for scanning window inference
preload – Preload model/network on all available GPU devices
train_mode – Run in Train mode instead of eval (when network has dropouts)
skip_writer – Skip Writer and return data dictionary
- post_transforms(data=None)[source]¶
Provide List of post-transforms
- Parameters
data –
current data dictionary/request which can be helpful to define the transforms per-request basis
For Example:
return [ monai.transforms.EnsureChannelFirstd(keys='pred', channel_dim='no_channel'), monai.transforms.Activationsd(keys='pred', softmax=True), monai.transforms.AsDiscreted(keys='pred', argmax=True), monai.transforms.SqueezeDimd(keys='pred', dim=0), monai.transforms.ToNumpyd(keys='pred'), monailabel.interface.utils.Restored(keys='pred', ref_image='image'), monailabel.interface.utils.ExtremePointsd(keys='pred', result='result', points='points'), monailabel.interface.utils.BoundingBoxd(keys='pred', result='result', bbox='bbox'), ]
- Return type
Sequence
[Callable
]
- pre_transforms(data=None)[source]¶
Provide List of pre-transforms
- Parameters
data –
current data dictionary/request which can be helpful to define the transforms per-request basis
For Example:
return [ monai.transforms.LoadImaged(keys='image'), monai.transforms.EnsureChannelFirstd(keys='image', channel_dim='no_channel'), monai.transforms.Spacingd(keys='image', pixdim=[1.0, 1.0, 1.0]), monai.transforms.ScaleIntensityRanged(keys='image', a_min=-57, a_max=164, b_min=0.0, b_max=1.0, clip=True), ]
- Return type
Sequence
[Callable
]