Source code for monailabel.tasks.scoring.dice

# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging

import numpy as np
import torch
from monai.transforms import LoadImage

from monailabel.interfaces.datastore import Datastore, DefaultLabelTag
from monailabel.interfaces.tasks.scoring import ScoringMethod

logger = logging.getLogger(__name__)


[docs]class Dice(ScoringMethod): """ Compute dice between final vs original tags """ def __init__(self): super().__init__("Compute Dice for predicated label vs submitted") def __call__(self, request, datastore: Datastore): loader = LoadImage(image_only=True) tag_y = request.get("y", DefaultLabelTag.FINAL) tag_y_pred = request.get("y_pred", DefaultLabelTag.ORIGINAL) result = {} for image_id in datastore.list_images(): y_i = datastore.get_label_by_image_id(image_id, tag_y) if tag_y else None y_pred_i = datastore.get_label_by_image_id(image_id, tag_y_pred) if tag_y_pred else None if y_i and y_pred_i: y = loader(datastore.get_label_uri(y_i, tag_y)) y_pred = loader(datastore.get_label_uri(y_pred_i, tag_y_pred)) y = y.flatten() if isinstance(y, torch.Tensor): y = y.numpy() y_pred = y_pred.flatten() if isinstance(y_pred, torch.Tensor): y_pred = y_pred.numpy() union = np.sum(y) + np.sum(y_pred) dice = 2.0 * np.sum(y * y_pred) / union if union != 0 else 1 logger.info(f"Dice Score for {image_id} is {dice}") datastore.update_image_info(image_id, {"dice": dice}) result[image_id] = dice return result