Source code for monailabel.interfaces.tasks.infer_v2

# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
from abc import ABCMeta, abstractmethod
from enum import Enum
from typing import Any, Dict, Sequence, Tuple, Union

logger = logging.getLogger(__name__)

[docs]class InferType(str, Enum): """ Type of Inference Model Attributes: SEGMENTATION - Segmentation Model ANNOTATION - Annotation Model CLASSIFICATION - Classification Model DEEPGROW - Deepgrow Interactive Model DEEPEDIT - DeepEdit Interactive Model SCRIBBLES - Scribbles Model DETECTION - Detection Model OTHERS - Other Model Type """ SEGMENTATION: str = "segmentation" ANNOTATION: str = "annotation" CLASSIFICATION: str = "classification" DEEPGROW: str = "deepgrow" DEEPEDIT: str = "deepedit" SCRIBBLES: str = "scribbles" DETECTION: str = "detection" OTHERS: str = "others"
[docs]class InferTask(metaclass=ABCMeta): """ Inference Task """
[docs] def __init__( self, type: Union[str, InferType], labels: Union[str, None, Sequence[str], Dict[Any, Any]], dimension: int, description: str, config: Union[None, Dict[str, Any]] = None, ): """ :param type: Type of Infer (segmentation, deepgrow etc..) :param labels: Labels associated to this Infer :param dimension: Input dimension :param description: Description :param config: K,V pairs to be part of user config """ self.type = type self.labels = [] if labels is None else [labels] if isinstance(labels, str) else labels self.dimension = dimension self.description = description self._config: Dict[str, Any] = {} if config: self._config.update(config)
[docs] def info(self) -> Dict[str, Any]: return { "type": self.type, "labels": self.labels, "dimension": self.dimension, "description": self.description, "config": self.config(), }
[docs] def config(self) -> Dict[str, Any]: return self._config
[docs] def get_path(self, validate=True): return None
[docs] @abstractmethod def is_valid(self) -> bool: pass
@abstractmethod def __call__(self, request) -> Union[Dict, Tuple[str, Dict[str, Any]]]: pass