Source code for monai.networks.nets.swin_unetr

# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

import itertools
from collections.abc import Sequence

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from torch.nn import LayerNorm
from typing_extensions import Final

from monai.networks.blocks import MLPBlock as Mlp
from monai.networks.blocks import PatchEmbed, UnetOutBlock, UnetrBasicBlock, UnetrUpBlock
from monai.networks.layers import DropPath, trunc_normal_
from monai.utils import ensure_tuple_rep, look_up_option, optional_import
from monai.utils.deprecate_utils import deprecated_arg

rearrange, _ = optional_import("einops", name="rearrange")

__all__ = [
    "SwinUNETR",
    "window_partition",
    "window_reverse",
    "WindowAttention",
    "SwinTransformerBlock",
    "PatchMerging",
    "PatchMergingV2",
    "MERGING_MODE",
    "BasicLayer",
    "SwinTransformer",
]


[docs] class SwinUNETR(nn.Module): """ Swin UNETR based on: "Hatamizadeh et al., Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images <https://arxiv.org/abs/2201.01266>" """ patch_size: Final[int] = 2
[docs] @deprecated_arg( name="img_size", since="1.3", removed="1.5", msg_suffix="The img_size argument is not required anymore and " "checks on the input size are run during forward().", ) def __init__( self, img_size: Sequence[int] | int, in_channels: int, out_channels: int, depths: Sequence[int] = (2, 2, 2, 2), num_heads: Sequence[int] = (3, 6, 12, 24), feature_size: int = 24, norm_name: tuple | str = "instance", drop_rate: float = 0.0, attn_drop_rate: float = 0.0, dropout_path_rate: float = 0.0, normalize: bool = True, use_checkpoint: bool = False, spatial_dims: int = 3, downsample="merging", use_v2=False, ) -> None: """ Args: img_size: spatial dimension of input image. This argument is only used for checking that the input image size is divisible by the patch size. The tensor passed to forward() can have a dynamic shape as long as its spatial dimensions are divisible by 2**5. It will be removed in an upcoming version. in_channels: dimension of input channels. out_channels: dimension of output channels. feature_size: dimension of network feature size. depths: number of layers in each stage. num_heads: number of attention heads. norm_name: feature normalization type and arguments. drop_rate: dropout rate. attn_drop_rate: attention dropout rate. dropout_path_rate: drop path rate. normalize: normalize output intermediate features in each stage. use_checkpoint: use gradient checkpointing for reduced memory usage. spatial_dims: number of spatial dims. downsample: module used for downsampling, available options are `"mergingv2"`, `"merging"` and a user-specified `nn.Module` following the API defined in :py:class:`monai.networks.nets.PatchMerging`. The default is currently `"merging"` (the original version defined in v0.9.0). use_v2: using swinunetr_v2, which adds a residual convolution block at the beggining of each swin stage. Examples:: # for 3D single channel input with size (96,96,96), 4-channel output and feature size of 48. >>> net = SwinUNETR(img_size=(96,96,96), in_channels=1, out_channels=4, feature_size=48) # for 3D 4-channel input with size (128,128,128), 3-channel output and (2,4,2,2) layers in each stage. >>> net = SwinUNETR(img_size=(128,128,128), in_channels=4, out_channels=3, depths=(2,4,2,2)) # for 2D single channel input with size (96,96), 2-channel output and gradient checkpointing. >>> net = SwinUNETR(img_size=(96,96), in_channels=3, out_channels=2, use_checkpoint=True, spatial_dims=2) """ super().__init__() img_size = ensure_tuple_rep(img_size, spatial_dims) patch_sizes = ensure_tuple_rep(self.patch_size, spatial_dims) window_size = ensure_tuple_rep(7, spatial_dims) if spatial_dims not in (2, 3): raise ValueError("spatial dimension should be 2 or 3.") self._check_input_size(img_size) if not (0 <= drop_rate <= 1): raise ValueError("dropout rate should be between 0 and 1.") if not (0 <= attn_drop_rate <= 1): raise ValueError("attention dropout rate should be between 0 and 1.") if not (0 <= dropout_path_rate <= 1): raise ValueError("drop path rate should be between 0 and 1.") if feature_size % 12 != 0: raise ValueError("feature_size should be divisible by 12.") self.normalize = normalize self.swinViT = SwinTransformer( in_chans=in_channels, embed_dim=feature_size, window_size=window_size, patch_size=patch_sizes, depths=depths, num_heads=num_heads, mlp_ratio=4.0, qkv_bias=True, drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_rate=dropout_path_rate, norm_layer=nn.LayerNorm, use_checkpoint=use_checkpoint, spatial_dims=spatial_dims, downsample=look_up_option(downsample, MERGING_MODE) if isinstance(downsample, str) else downsample, use_v2=use_v2, ) self.encoder1 = UnetrBasicBlock( spatial_dims=spatial_dims, in_channels=in_channels, out_channels=feature_size, kernel_size=3, stride=1, norm_name=norm_name, res_block=True, ) self.encoder2 = UnetrBasicBlock( spatial_dims=spatial_dims, in_channels=feature_size, out_channels=feature_size, kernel_size=3, stride=1, norm_name=norm_name, res_block=True, ) self.encoder3 = UnetrBasicBlock( spatial_dims=spatial_dims, in_channels=2 * feature_size, out_channels=2 * feature_size, kernel_size=3, stride=1, norm_name=norm_name, res_block=True, ) self.encoder4 = UnetrBasicBlock( spatial_dims=spatial_dims, in_channels=4 * feature_size, out_channels=4 * feature_size, kernel_size=3, stride=1, norm_name=norm_name, res_block=True, ) self.encoder10 = UnetrBasicBlock( spatial_dims=spatial_dims, in_channels=16 * feature_size, out_channels=16 * feature_size, kernel_size=3, stride=1, norm_name=norm_name, res_block=True, ) self.decoder5 = UnetrUpBlock( spatial_dims=spatial_dims, in_channels=16 * feature_size, out_channels=8 * feature_size, kernel_size=3, upsample_kernel_size=2, norm_name=norm_name, res_block=True, ) self.decoder4 = UnetrUpBlock( spatial_dims=spatial_dims, in_channels=feature_size * 8, out_channels=feature_size * 4, kernel_size=3, upsample_kernel_size=2, norm_name=norm_name, res_block=True, ) self.decoder3 = UnetrUpBlock( spatial_dims=spatial_dims, in_channels=feature_size * 4, out_channels=feature_size * 2, kernel_size=3, upsample_kernel_size=2, norm_name=norm_name, res_block=True, ) self.decoder2 = UnetrUpBlock( spatial_dims=spatial_dims, in_channels=feature_size * 2, out_channels=feature_size, kernel_size=3, upsample_kernel_size=2, norm_name=norm_name, res_block=True, ) self.decoder1 = UnetrUpBlock( spatial_dims=spatial_dims, in_channels=feature_size, out_channels=feature_size, kernel_size=3, upsample_kernel_size=2, norm_name=norm_name, res_block=True, ) self.out = UnetOutBlock(spatial_dims=spatial_dims, in_channels=feature_size, out_channels=out_channels)
def load_from(self, weights): with torch.no_grad(): self.swinViT.patch_embed.proj.weight.copy_(weights["state_dict"]["module.patch_embed.proj.weight"]) self.swinViT.patch_embed.proj.bias.copy_(weights["state_dict"]["module.patch_embed.proj.bias"]) for bname, block in self.swinViT.layers1[0].blocks.named_children(): block.load_from(weights, n_block=bname, layer="layers1") self.swinViT.layers1[0].downsample.reduction.weight.copy_( weights["state_dict"]["module.layers1.0.downsample.reduction.weight"] ) self.swinViT.layers1[0].downsample.norm.weight.copy_( weights["state_dict"]["module.layers1.0.downsample.norm.weight"] ) self.swinViT.layers1[0].downsample.norm.bias.copy_( weights["state_dict"]["module.layers1.0.downsample.norm.bias"] ) for bname, block in self.swinViT.layers2[0].blocks.named_children(): block.load_from(weights, n_block=bname, layer="layers2") self.swinViT.layers2[0].downsample.reduction.weight.copy_( weights["state_dict"]["module.layers2.0.downsample.reduction.weight"] ) self.swinViT.layers2[0].downsample.norm.weight.copy_( weights["state_dict"]["module.layers2.0.downsample.norm.weight"] ) self.swinViT.layers2[0].downsample.norm.bias.copy_( weights["state_dict"]["module.layers2.0.downsample.norm.bias"] ) for bname, block in self.swinViT.layers3[0].blocks.named_children(): block.load_from(weights, n_block=bname, layer="layers3") self.swinViT.layers3[0].downsample.reduction.weight.copy_( weights["state_dict"]["module.layers3.0.downsample.reduction.weight"] ) self.swinViT.layers3[0].downsample.norm.weight.copy_( weights["state_dict"]["module.layers3.0.downsample.norm.weight"] ) self.swinViT.layers3[0].downsample.norm.bias.copy_( weights["state_dict"]["module.layers3.0.downsample.norm.bias"] ) for bname, block in self.swinViT.layers4[0].blocks.named_children(): block.load_from(weights, n_block=bname, layer="layers4") self.swinViT.layers4[0].downsample.reduction.weight.copy_( weights["state_dict"]["module.layers4.0.downsample.reduction.weight"] ) self.swinViT.layers4[0].downsample.norm.weight.copy_( weights["state_dict"]["module.layers4.0.downsample.norm.weight"] ) self.swinViT.layers4[0].downsample.norm.bias.copy_( weights["state_dict"]["module.layers4.0.downsample.norm.bias"] ) @torch.jit.unused def _check_input_size(self, spatial_shape): img_size = np.array(spatial_shape) remainder = (img_size % np.power(self.patch_size, 5)) > 0 if remainder.any(): wrong_dims = (np.where(remainder)[0] + 2).tolist() raise ValueError( f"spatial dimensions {wrong_dims} of input image (spatial shape: {spatial_shape})" f" must be divisible by {self.patch_size}**5." )
[docs] def forward(self, x_in): if not torch.jit.is_scripting(): self._check_input_size(x_in.shape[2:]) hidden_states_out = self.swinViT(x_in, self.normalize) enc0 = self.encoder1(x_in) enc1 = self.encoder2(hidden_states_out[0]) enc2 = self.encoder3(hidden_states_out[1]) enc3 = self.encoder4(hidden_states_out[2]) dec4 = self.encoder10(hidden_states_out[4]) dec3 = self.decoder5(dec4, hidden_states_out[3]) dec2 = self.decoder4(dec3, enc3) dec1 = self.decoder3(dec2, enc2) dec0 = self.decoder2(dec1, enc1) out = self.decoder1(dec0, enc0) logits = self.out(out) return logits
def window_partition(x, window_size): """window partition operation based on: "Liu et al., Swin Transformer: Hierarchical Vision Transformer using Shifted Windows <https://arxiv.org/abs/2103.14030>" https://github.com/microsoft/Swin-Transformer Args: x: input tensor. window_size: local window size. """ x_shape = x.size() if len(x_shape) == 5: b, d, h, w, c = x_shape x = x.view( b, d // window_size[0], window_size[0], h // window_size[1], window_size[1], w // window_size[2], window_size[2], c, ) windows = ( x.permute(0, 1, 3, 5, 2, 4, 6, 7).contiguous().view(-1, window_size[0] * window_size[1] * window_size[2], c) ) elif len(x_shape) == 4: b, h, w, c = x.shape x = x.view(b, h // window_size[0], window_size[0], w // window_size[1], window_size[1], c) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0] * window_size[1], c) return windows def window_reverse(windows, window_size, dims): """window reverse operation based on: "Liu et al., Swin Transformer: Hierarchical Vision Transformer using Shifted Windows <https://arxiv.org/abs/2103.14030>" https://github.com/microsoft/Swin-Transformer Args: windows: windows tensor. window_size: local window size. dims: dimension values. """ if len(dims) == 4: b, d, h, w = dims x = windows.view( b, d // window_size[0], h // window_size[1], w // window_size[2], window_size[0], window_size[1], window_size[2], -1, ) x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(b, d, h, w, -1) elif len(dims) == 3: b, h, w = dims x = windows.view(b, h // window_size[0], w // window_size[1], window_size[0], window_size[1], -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1) return x def get_window_size(x_size, window_size, shift_size=None): """Computing window size based on: "Liu et al., Swin Transformer: Hierarchical Vision Transformer using Shifted Windows <https://arxiv.org/abs/2103.14030>" https://github.com/microsoft/Swin-Transformer Args: x_size: input size. window_size: local window size. shift_size: window shifting size. """ use_window_size = list(window_size) if shift_size is not None: use_shift_size = list(shift_size) for i in range(len(x_size)): if x_size[i] <= window_size[i]: use_window_size[i] = x_size[i] if shift_size is not None: use_shift_size[i] = 0 if shift_size is None: return tuple(use_window_size) else: return tuple(use_window_size), tuple(use_shift_size) class WindowAttention(nn.Module): """ Window based multi-head self attention module with relative position bias based on: "Liu et al., Swin Transformer: Hierarchical Vision Transformer using Shifted Windows <https://arxiv.org/abs/2103.14030>" https://github.com/microsoft/Swin-Transformer """ def __init__( self, dim: int, num_heads: int, window_size: Sequence[int], qkv_bias: bool = False, attn_drop: float = 0.0, proj_drop: float = 0.0, ) -> None: """ Args: dim: number of feature channels. num_heads: number of attention heads. window_size: local window size. qkv_bias: add a learnable bias to query, key, value. attn_drop: attention dropout rate. proj_drop: dropout rate of output. """ super().__init__() self.dim = dim self.window_size = window_size self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5 mesh_args = torch.meshgrid.__kwdefaults__ if len(self.window_size) == 3: self.relative_position_bias_table = nn.Parameter( torch.zeros( (2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1), num_heads, ) ) coords_d = torch.arange(self.window_size[0]) coords_h = torch.arange(self.window_size[1]) coords_w = torch.arange(self.window_size[2]) if mesh_args is not None: coords = torch.stack(torch.meshgrid(coords_d, coords_h, coords_w, indexing="ij")) else: coords = torch.stack(torch.meshgrid(coords_d, coords_h, coords_w)) coords_flatten = torch.flatten(coords, 1) relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] relative_coords = relative_coords.permute(1, 2, 0).contiguous() relative_coords[:, :, 0] += self.window_size[0] - 1 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 2] += self.window_size[2] - 1 relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1) relative_coords[:, :, 1] *= 2 * self.window_size[2] - 1 elif len(self.window_size) == 2: self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads) ) coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) if mesh_args is not None: coords = torch.stack(torch.meshgrid(coords_h, coords_w, indexing="ij")) else: coords = torch.stack(torch.meshgrid(coords_h, coords_w)) coords_flatten = torch.flatten(coords, 1) relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] relative_coords = relative_coords.permute(1, 2, 0).contiguous() relative_coords[:, :, 0] += self.window_size[0] - 1 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) trunc_normal_(self.relative_position_bias_table, std=0.02) self.softmax = nn.Softmax(dim=-1) def forward(self, x, mask): b, n, c = x.shape qkv = self.qkv(x).reshape(b, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] q = q * self.scale attn = q @ k.transpose(-2, -1) relative_position_bias = self.relative_position_bias_table[ self.relative_position_index.clone()[:n, :n].reshape(-1) ].reshape(n, n, -1) relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nw = mask.shape[0] attn = attn.view(b // nw, nw, self.num_heads, n, n) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, n, n) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn).to(v.dtype) x = (attn @ v).transpose(1, 2).reshape(b, n, c) x = self.proj(x) x = self.proj_drop(x) return x class SwinTransformerBlock(nn.Module): """ Swin Transformer block based on: "Liu et al., Swin Transformer: Hierarchical Vision Transformer using Shifted Windows <https://arxiv.org/abs/2103.14030>" https://github.com/microsoft/Swin-Transformer """ def __init__( self, dim: int, num_heads: int, window_size: Sequence[int], shift_size: Sequence[int], mlp_ratio: float = 4.0, qkv_bias: bool = True, drop: float = 0.0, attn_drop: float = 0.0, drop_path: float = 0.0, act_layer: str = "GELU", norm_layer: type[LayerNorm] = nn.LayerNorm, use_checkpoint: bool = False, ) -> None: """ Args: dim: number of feature channels. num_heads: number of attention heads. window_size: local window size. shift_size: window shift size. mlp_ratio: ratio of mlp hidden dim to embedding dim. qkv_bias: add a learnable bias to query, key, value. drop: dropout rate. attn_drop: attention dropout rate. drop_path: stochastic depth rate. act_layer: activation layer. norm_layer: normalization layer. use_checkpoint: use gradient checkpointing for reduced memory usage. """ super().__init__() self.dim = dim self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio self.use_checkpoint = use_checkpoint self.norm1 = norm_layer(dim) self.attn = WindowAttention( dim, window_size=self.window_size, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, ) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(hidden_size=dim, mlp_dim=mlp_hidden_dim, act=act_layer, dropout_rate=drop, dropout_mode="swin") def forward_part1(self, x, mask_matrix): x_shape = x.size() x = self.norm1(x) if len(x_shape) == 5: b, d, h, w, c = x.shape window_size, shift_size = get_window_size((d, h, w), self.window_size, self.shift_size) pad_l = pad_t = pad_d0 = 0 pad_d1 = (window_size[0] - d % window_size[0]) % window_size[0] pad_b = (window_size[1] - h % window_size[1]) % window_size[1] pad_r = (window_size[2] - w % window_size[2]) % window_size[2] x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b, pad_d0, pad_d1)) _, dp, hp, wp, _ = x.shape dims = [b, dp, hp, wp] elif len(x_shape) == 4: b, h, w, c = x.shape window_size, shift_size = get_window_size((h, w), self.window_size, self.shift_size) pad_l = pad_t = 0 pad_b = (window_size[0] - h % window_size[0]) % window_size[0] pad_r = (window_size[1] - w % window_size[1]) % window_size[1] x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) _, hp, wp, _ = x.shape dims = [b, hp, wp] if any(i > 0 for i in shift_size): if len(x_shape) == 5: shifted_x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3)) elif len(x_shape) == 4: shifted_x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1]), dims=(1, 2)) attn_mask = mask_matrix else: shifted_x = x attn_mask = None x_windows = window_partition(shifted_x, window_size) attn_windows = self.attn(x_windows, mask=attn_mask) attn_windows = attn_windows.view(-1, *(window_size + (c,))) shifted_x = window_reverse(attn_windows, window_size, dims) if any(i > 0 for i in shift_size): if len(x_shape) == 5: x = torch.roll(shifted_x, shifts=(shift_size[0], shift_size[1], shift_size[2]), dims=(1, 2, 3)) elif len(x_shape) == 4: x = torch.roll(shifted_x, shifts=(shift_size[0], shift_size[1]), dims=(1, 2)) else: x = shifted_x if len(x_shape) == 5: if pad_d1 > 0 or pad_r > 0 or pad_b > 0: x = x[:, :d, :h, :w, :].contiguous() elif len(x_shape) == 4: if pad_r > 0 or pad_b > 0: x = x[:, :h, :w, :].contiguous() return x def forward_part2(self, x): return self.drop_path(self.mlp(self.norm2(x))) def load_from(self, weights, n_block, layer): root = f"module.{layer}.0.blocks.{n_block}." block_names = [ "norm1.weight", "norm1.bias", "attn.relative_position_bias_table", "attn.relative_position_index", "attn.qkv.weight", "attn.qkv.bias", "attn.proj.weight", "attn.proj.bias", "norm2.weight", "norm2.bias", "mlp.fc1.weight", "mlp.fc1.bias", "mlp.fc2.weight", "mlp.fc2.bias", ] with torch.no_grad(): self.norm1.weight.copy_(weights["state_dict"][root + block_names[0]]) self.norm1.bias.copy_(weights["state_dict"][root + block_names[1]]) self.attn.relative_position_bias_table.copy_(weights["state_dict"][root + block_names[2]]) self.attn.relative_position_index.copy_(weights["state_dict"][root + block_names[3]]) self.attn.qkv.weight.copy_(weights["state_dict"][root + block_names[4]]) self.attn.qkv.bias.copy_(weights["state_dict"][root + block_names[5]]) self.attn.proj.weight.copy_(weights["state_dict"][root + block_names[6]]) self.attn.proj.bias.copy_(weights["state_dict"][root + block_names[7]]) self.norm2.weight.copy_(weights["state_dict"][root + block_names[8]]) self.norm2.bias.copy_(weights["state_dict"][root + block_names[9]]) self.mlp.linear1.weight.copy_(weights["state_dict"][root + block_names[10]]) self.mlp.linear1.bias.copy_(weights["state_dict"][root + block_names[11]]) self.mlp.linear2.weight.copy_(weights["state_dict"][root + block_names[12]]) self.mlp.linear2.bias.copy_(weights["state_dict"][root + block_names[13]]) def forward(self, x, mask_matrix): shortcut = x if self.use_checkpoint: x = checkpoint.checkpoint(self.forward_part1, x, mask_matrix, use_reentrant=False) else: x = self.forward_part1(x, mask_matrix) x = shortcut + self.drop_path(x) if self.use_checkpoint: x = x + checkpoint.checkpoint(self.forward_part2, x, use_reentrant=False) else: x = x + self.forward_part2(x) return x class PatchMergingV2(nn.Module): """ Patch merging layer based on: "Liu et al., Swin Transformer: Hierarchical Vision Transformer using Shifted Windows <https://arxiv.org/abs/2103.14030>" https://github.com/microsoft/Swin-Transformer """ def __init__(self, dim: int, norm_layer: type[LayerNorm] = nn.LayerNorm, spatial_dims: int = 3) -> None: """ Args: dim: number of feature channels. norm_layer: normalization layer. spatial_dims: number of spatial dims. """ super().__init__() self.dim = dim if spatial_dims == 3: self.reduction = nn.Linear(8 * dim, 2 * dim, bias=False) self.norm = norm_layer(8 * dim) elif spatial_dims == 2: self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def forward(self, x): x_shape = x.size() if len(x_shape) == 5: b, d, h, w, c = x_shape pad_input = (h % 2 == 1) or (w % 2 == 1) or (d % 2 == 1) if pad_input: x = F.pad(x, (0, 0, 0, w % 2, 0, h % 2, 0, d % 2)) x = torch.cat( [x[:, i::2, j::2, k::2, :] for i, j, k in itertools.product(range(2), range(2), range(2))], -1 ) elif len(x_shape) == 4: b, h, w, c = x_shape pad_input = (h % 2 == 1) or (w % 2 == 1) if pad_input: x = F.pad(x, (0, 0, 0, w % 2, 0, h % 2)) x = torch.cat([x[:, j::2, i::2, :] for i, j in itertools.product(range(2), range(2))], -1) x = self.norm(x) x = self.reduction(x) return x class PatchMerging(PatchMergingV2): """The `PatchMerging` module previously defined in v0.9.0.""" def forward(self, x): x_shape = x.size() if len(x_shape) == 4: return super().forward(x) if len(x_shape) != 5: raise ValueError(f"expecting 5D x, got {x.shape}.") b, d, h, w, c = x_shape pad_input = (h % 2 == 1) or (w % 2 == 1) or (d % 2 == 1) if pad_input: x = F.pad(x, (0, 0, 0, w % 2, 0, h % 2, 0, d % 2)) x0 = x[:, 0::2, 0::2, 0::2, :] x1 = x[:, 1::2, 0::2, 0::2, :] x2 = x[:, 0::2, 1::2, 0::2, :] x3 = x[:, 0::2, 0::2, 1::2, :] x4 = x[:, 1::2, 0::2, 1::2, :] x5 = x[:, 0::2, 1::2, 0::2, :] x6 = x[:, 0::2, 0::2, 1::2, :] x7 = x[:, 1::2, 1::2, 1::2, :] x = torch.cat([x0, x1, x2, x3, x4, x5, x6, x7], -1) x = self.norm(x) x = self.reduction(x) return x MERGING_MODE = {"merging": PatchMerging, "mergingv2": PatchMergingV2} def compute_mask(dims, window_size, shift_size, device): """Computing region masks based on: "Liu et al., Swin Transformer: Hierarchical Vision Transformer using Shifted Windows <https://arxiv.org/abs/2103.14030>" https://github.com/microsoft/Swin-Transformer Args: dims: dimension values. window_size: local window size. shift_size: shift size. device: device. """ cnt = 0 if len(dims) == 3: d, h, w = dims img_mask = torch.zeros((1, d, h, w, 1), device=device) for d in slice(-window_size[0]), slice(-window_size[0], -shift_size[0]), slice(-shift_size[0], None): for h in slice(-window_size[1]), slice(-window_size[1], -shift_size[1]), slice(-shift_size[1], None): for w in slice(-window_size[2]), slice(-window_size[2], -shift_size[2]), slice(-shift_size[2], None): img_mask[:, d, h, w, :] = cnt cnt += 1 elif len(dims) == 2: h, w = dims img_mask = torch.zeros((1, h, w, 1), device=device) for h in slice(-window_size[0]), slice(-window_size[0], -shift_size[0]), slice(-shift_size[0], None): for w in slice(-window_size[1]), slice(-window_size[1], -shift_size[1]), slice(-shift_size[1], None): img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition(img_mask, window_size) mask_windows = mask_windows.squeeze(-1) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) return attn_mask class BasicLayer(nn.Module): """ Basic Swin Transformer layer in one stage based on: "Liu et al., Swin Transformer: Hierarchical Vision Transformer using Shifted Windows <https://arxiv.org/abs/2103.14030>" https://github.com/microsoft/Swin-Transformer """ def __init__( self, dim: int, depth: int, num_heads: int, window_size: Sequence[int], drop_path: list, mlp_ratio: float = 4.0, qkv_bias: bool = False, drop: float = 0.0, attn_drop: float = 0.0, norm_layer: type[LayerNorm] = nn.LayerNorm, downsample: nn.Module | None = None, use_checkpoint: bool = False, ) -> None: """ Args: dim: number of feature channels. depth: number of layers in each stage. num_heads: number of attention heads. window_size: local window size. drop_path: stochastic depth rate. mlp_ratio: ratio of mlp hidden dim to embedding dim. qkv_bias: add a learnable bias to query, key, value. drop: dropout rate. attn_drop: attention dropout rate. norm_layer: normalization layer. downsample: an optional downsampling layer at the end of the layer. use_checkpoint: use gradient checkpointing for reduced memory usage. """ super().__init__() self.window_size = window_size self.shift_size = tuple(i // 2 for i in window_size) self.no_shift = tuple(0 for i in window_size) self.depth = depth self.use_checkpoint = use_checkpoint self.blocks = nn.ModuleList( [ SwinTransformerBlock( dim=dim, num_heads=num_heads, window_size=self.window_size, shift_size=self.no_shift if (i % 2 == 0) else self.shift_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer, use_checkpoint=use_checkpoint, ) for i in range(depth) ] ) self.downsample = downsample if callable(self.downsample): self.downsample = downsample(dim=dim, norm_layer=norm_layer, spatial_dims=len(self.window_size)) def forward(self, x): x_shape = x.size() if len(x_shape) == 5: b, c, d, h, w = x_shape window_size, shift_size = get_window_size((d, h, w), self.window_size, self.shift_size) x = rearrange(x, "b c d h w -> b d h w c") dp = int(np.ceil(d / window_size[0])) * window_size[0] hp = int(np.ceil(h / window_size[1])) * window_size[1] wp = int(np.ceil(w / window_size[2])) * window_size[2] attn_mask = compute_mask([dp, hp, wp], window_size, shift_size, x.device) for blk in self.blocks: x = blk(x, attn_mask) x = x.view(b, d, h, w, -1) if self.downsample is not None: x = self.downsample(x) x = rearrange(x, "b d h w c -> b c d h w") elif len(x_shape) == 4: b, c, h, w = x_shape window_size, shift_size = get_window_size((h, w), self.window_size, self.shift_size) x = rearrange(x, "b c h w -> b h w c") hp = int(np.ceil(h / window_size[0])) * window_size[0] wp = int(np.ceil(w / window_size[1])) * window_size[1] attn_mask = compute_mask([hp, wp], window_size, shift_size, x.device) for blk in self.blocks: x = blk(x, attn_mask) x = x.view(b, h, w, -1) if self.downsample is not None: x = self.downsample(x) x = rearrange(x, "b h w c -> b c h w") return x class SwinTransformer(nn.Module): """ Swin Transformer based on: "Liu et al., Swin Transformer: Hierarchical Vision Transformer using Shifted Windows <https://arxiv.org/abs/2103.14030>" https://github.com/microsoft/Swin-Transformer """ def __init__( self, in_chans: int, embed_dim: int, window_size: Sequence[int], patch_size: Sequence[int], depths: Sequence[int], num_heads: Sequence[int], mlp_ratio: float = 4.0, qkv_bias: bool = True, drop_rate: float = 0.0, attn_drop_rate: float = 0.0, drop_path_rate: float = 0.0, norm_layer: type[LayerNorm] = nn.LayerNorm, patch_norm: bool = False, use_checkpoint: bool = False, spatial_dims: int = 3, downsample="merging", use_v2=False, ) -> None: """ Args: in_chans: dimension of input channels. embed_dim: number of linear projection output channels. window_size: local window size. patch_size: patch size. depths: number of layers in each stage. num_heads: number of attention heads. mlp_ratio: ratio of mlp hidden dim to embedding dim. qkv_bias: add a learnable bias to query, key, value. drop_rate: dropout rate. attn_drop_rate: attention dropout rate. drop_path_rate: stochastic depth rate. norm_layer: normalization layer. patch_norm: add normalization after patch embedding. use_checkpoint: use gradient checkpointing for reduced memory usage. spatial_dims: spatial dimension. downsample: module used for downsampling, available options are `"mergingv2"`, `"merging"` and a user-specified `nn.Module` following the API defined in :py:class:`monai.networks.nets.PatchMerging`. The default is currently `"merging"` (the original version defined in v0.9.0). use_v2: using swinunetr_v2, which adds a residual convolution block at the beginning of each swin stage. """ super().__init__() self.num_layers = len(depths) self.embed_dim = embed_dim self.patch_norm = patch_norm self.window_size = window_size self.patch_size = patch_size self.patch_embed = PatchEmbed( patch_size=self.patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None, # type: ignore spatial_dims=spatial_dims, ) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] self.use_v2 = use_v2 self.layers1 = nn.ModuleList() self.layers2 = nn.ModuleList() self.layers3 = nn.ModuleList() self.layers4 = nn.ModuleList() if self.use_v2: self.layers1c = nn.ModuleList() self.layers2c = nn.ModuleList() self.layers3c = nn.ModuleList() self.layers4c = nn.ModuleList() down_sample_mod = look_up_option(downsample, MERGING_MODE) if isinstance(downsample, str) else downsample for i_layer in range(self.num_layers): layer = BasicLayer( dim=int(embed_dim * 2**i_layer), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=self.window_size, drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer, downsample=down_sample_mod, use_checkpoint=use_checkpoint, ) if i_layer == 0: self.layers1.append(layer) elif i_layer == 1: self.layers2.append(layer) elif i_layer == 2: self.layers3.append(layer) elif i_layer == 3: self.layers4.append(layer) if self.use_v2: layerc = UnetrBasicBlock( spatial_dims=3, in_channels=embed_dim * 2**i_layer, out_channels=embed_dim * 2**i_layer, kernel_size=3, stride=1, norm_name="instance", res_block=True, ) if i_layer == 0: self.layers1c.append(layerc) elif i_layer == 1: self.layers2c.append(layerc) elif i_layer == 2: self.layers3c.append(layerc) elif i_layer == 3: self.layers4c.append(layerc) self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) def proj_out(self, x, normalize=False): if normalize: x_shape = x.size() if len(x_shape) == 5: n, ch, d, h, w = x_shape x = rearrange(x, "n c d h w -> n d h w c") x = F.layer_norm(x, [ch]) x = rearrange(x, "n d h w c -> n c d h w") elif len(x_shape) == 4: n, ch, h, w = x_shape x = rearrange(x, "n c h w -> n h w c") x = F.layer_norm(x, [ch]) x = rearrange(x, "n h w c -> n c h w") return x def forward(self, x, normalize=True): x0 = self.patch_embed(x) x0 = self.pos_drop(x0) x0_out = self.proj_out(x0, normalize) if self.use_v2: x0 = self.layers1c[0](x0.contiguous()) x1 = self.layers1[0](x0.contiguous()) x1_out = self.proj_out(x1, normalize) if self.use_v2: x1 = self.layers2c[0](x1.contiguous()) x2 = self.layers2[0](x1.contiguous()) x2_out = self.proj_out(x2, normalize) if self.use_v2: x2 = self.layers3c[0](x2.contiguous()) x3 = self.layers3[0](x2.contiguous()) x3_out = self.proj_out(x3, normalize) if self.use_v2: x3 = self.layers4c[0](x3.contiguous()) x4 = self.layers4[0](x3.contiguous()) x4_out = self.proj_out(x4, normalize) return [x0_out, x1_out, x2_out, x3_out, x4_out] def filter_swinunetr(key, value): """ A filter function used to filter the pretrained weights from [1], then the weights can be loaded into MONAI SwinUNETR Model. This function is typically used with `monai.networks.copy_model_state` [1] "Valanarasu JM et al., Disruptive Autoencoders: Leveraging Low-level features for 3D Medical Image Pre-training <https://arxiv.org/abs/2307.16896>" Args: key: the key in the source state dict used for the update. value: the value in the source state dict used for the update. Examples:: import torch from monai.apps import download_url from monai.networks.utils import copy_model_state from monai.networks.nets.swin_unetr import SwinUNETR, filter_swinunetr model = SwinUNETR(img_size=(96, 96, 96), in_channels=1, out_channels=3, feature_size=48) resource = ( "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/ssl_pretrained_weights.pth" ) ssl_weights_path = "./ssl_pretrained_weights.pth" download_url(resource, ssl_weights_path) ssl_weights = torch.load(ssl_weights_path)["model"] dst_dict, loaded, not_loaded = copy_model_state(model, ssl_weights, filter_func=filter_swinunetr) """ if key in [ "encoder.mask_token", "encoder.norm.weight", "encoder.norm.bias", "out.conv.conv.weight", "out.conv.conv.bias", ]: return None if key[:8] == "encoder.": if key[8:19] == "patch_embed": new_key = "swinViT." + key[8:] else: new_key = "swinViT." + key[8:18] + key[20:] return new_key, value else: return None