Source code for monai.networks.blocks.patchembedding

# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

from collections.abc import Sequence

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import LayerNorm

from monai.networks.blocks.pos_embed_utils import build_sincos_position_embedding
from monai.networks.layers import Conv, trunc_normal_
from monai.utils import deprecated_arg, ensure_tuple_rep, optional_import
from monai.utils.module import look_up_option

Rearrange, _ = optional_import("einops.layers.torch", name="Rearrange")
SUPPORTED_PATCH_EMBEDDING_TYPES = {"conv", "perceptron"}
SUPPORTED_POS_EMBEDDING_TYPES = {"none", "learnable", "sincos"}


[docs] class PatchEmbeddingBlock(nn.Module): """ A patch embedding block, based on: "Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>" Example:: >>> from monai.networks.blocks import PatchEmbeddingBlock >>> PatchEmbeddingBlock(in_channels=4, img_size=32, patch_size=8, hidden_size=32, num_heads=4, >>> proj_type="conv", pos_embed_type="sincos") """
[docs] @deprecated_arg( name="pos_embed", since="1.2", removed="1.4", new_name="proj_type", msg_suffix="please use `proj_type` instead." ) def __init__( self, in_channels: int, img_size: Sequence[int] | int, patch_size: Sequence[int] | int, hidden_size: int, num_heads: int, pos_embed: str = "conv", proj_type: str = "conv", pos_embed_type: str = "learnable", dropout_rate: float = 0.0, spatial_dims: int = 3, ) -> None: """ Args: in_channels: dimension of input channels. img_size: dimension of input image. patch_size: dimension of patch size. hidden_size: dimension of hidden layer. num_heads: number of attention heads. proj_type: patch embedding layer type. pos_embed_type: position embedding layer type. dropout_rate: fraction of the input units to drop. spatial_dims: number of spatial dimensions. .. deprecated:: 1.4 ``pos_embed`` is deprecated in favor of ``proj_type``. """ super().__init__() if not (0 <= dropout_rate <= 1): raise ValueError(f"dropout_rate {dropout_rate} should be between 0 and 1.") if hidden_size % num_heads != 0: raise ValueError(f"hidden size {hidden_size} should be divisible by num_heads {num_heads}.") self.proj_type = look_up_option(proj_type, SUPPORTED_PATCH_EMBEDDING_TYPES) self.pos_embed_type = look_up_option(pos_embed_type, SUPPORTED_POS_EMBEDDING_TYPES) img_size = ensure_tuple_rep(img_size, spatial_dims) patch_size = ensure_tuple_rep(patch_size, spatial_dims) for m, p in zip(img_size, patch_size): if m < p: raise ValueError("patch_size should be smaller than img_size.") if self.proj_type == "perceptron" and m % p != 0: raise ValueError("patch_size should be divisible by img_size for perceptron.") self.n_patches = np.prod([im_d // p_d for im_d, p_d in zip(img_size, patch_size)]) self.patch_dim = int(in_channels * np.prod(patch_size)) self.patch_embeddings: nn.Module if self.proj_type == "conv": self.patch_embeddings = Conv[Conv.CONV, spatial_dims]( in_channels=in_channels, out_channels=hidden_size, kernel_size=patch_size, stride=patch_size ) elif self.proj_type == "perceptron": # for 3d: "b c (h p1) (w p2) (d p3)-> b (h w d) (p1 p2 p3 c)" chars = (("h", "p1"), ("w", "p2"), ("d", "p3"))[:spatial_dims] from_chars = "b c " + " ".join(f"({k} {v})" for k, v in chars) to_chars = f"b ({' '.join([c[0] for c in chars])}) ({' '.join([c[1] for c in chars])} c)" axes_len = {f"p{i+1}": p for i, p in enumerate(patch_size)} self.patch_embeddings = nn.Sequential( Rearrange(f"{from_chars} -> {to_chars}", **axes_len), nn.Linear(self.patch_dim, hidden_size) ) self.position_embeddings = nn.Parameter(torch.zeros(1, self.n_patches, hidden_size)) self.dropout = nn.Dropout(dropout_rate) if self.pos_embed_type == "none": pass elif self.pos_embed_type == "learnable": trunc_normal_(self.position_embeddings, mean=0.0, std=0.02, a=-2.0, b=2.0) elif self.pos_embed_type == "sincos": grid_size = [] for in_size, pa_size in zip(img_size, patch_size): grid_size.append(in_size // pa_size) with torch.no_grad(): pos_embeddings = build_sincos_position_embedding(grid_size, hidden_size, spatial_dims) self.position_embeddings.data.copy_(pos_embeddings.float()) else: raise ValueError(f"pos_embed_type {self.pos_embed_type} not supported.") self.apply(self._init_weights)
def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, mean=0.0, std=0.02, a=-2.0, b=2.0) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0)
[docs] def forward(self, x): x = self.patch_embeddings(x) if self.proj_type == "conv": x = x.flatten(2).transpose(-1, -2) embeddings = x + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings
class PatchEmbed(nn.Module): """ Patch embedding block based on: "Liu et al., Swin Transformer: Hierarchical Vision Transformer using Shifted Windows <https://arxiv.org/abs/2103.14030>" https://github.com/microsoft/Swin-Transformer Unlike ViT patch embedding block: (1) input is padded to satisfy window size requirements (2) normalized if specified (3) position embedding is not used. Example:: >>> from monai.networks.blocks import PatchEmbed >>> PatchEmbed(patch_size=2, in_chans=1, embed_dim=48, norm_layer=nn.LayerNorm, spatial_dims=3) """ def __init__( self, patch_size: Sequence[int] | int = 2, in_chans: int = 1, embed_dim: int = 48, norm_layer: type[LayerNorm] = nn.LayerNorm, spatial_dims: int = 3, ) -> None: """ Args: patch_size: dimension of patch size. in_chans: dimension of input channels. embed_dim: number of linear projection output channels. norm_layer: normalization layer. spatial_dims: spatial dimension. """ super().__init__() if spatial_dims not in (2, 3): raise ValueError("spatial dimension should be 2 or 3.") patch_size = ensure_tuple_rep(patch_size, spatial_dims) self.patch_size = patch_size self.embed_dim = embed_dim self.proj = Conv[Conv.CONV, spatial_dims]( in_channels=in_chans, out_channels=embed_dim, kernel_size=patch_size, stride=patch_size ) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): x_shape = x.size() if len(x_shape) == 5: _, _, d, h, w = x_shape if w % self.patch_size[2] != 0: x = F.pad(x, (0, self.patch_size[2] - w % self.patch_size[2])) if h % self.patch_size[1] != 0: x = F.pad(x, (0, 0, 0, self.patch_size[1] - h % self.patch_size[1])) if d % self.patch_size[0] != 0: x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - d % self.patch_size[0])) elif len(x_shape) == 4: _, _, h, w = x_shape if w % self.patch_size[1] != 0: x = F.pad(x, (0, self.patch_size[1] - w % self.patch_size[1])) if h % self.patch_size[0] != 0: x = F.pad(x, (0, 0, 0, self.patch_size[0] - h % self.patch_size[0])) x = self.proj(x) if self.norm is not None: x_shape = x.size() x = x.flatten(2).transpose(1, 2) x = self.norm(x) if len(x_shape) == 5: d, wh, ww = x_shape[2], x_shape[3], x_shape[4] x = x.transpose(1, 2).view(-1, self.embed_dim, d, wh, ww) elif len(x_shape) == 4: wh, ww = x_shape[2], x_shape[3] x = x.transpose(1, 2).view(-1, self.embed_dim, wh, ww) return x