Source code for monai.metrics.wrapper

# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

from typing import cast

import torch

from monai.metrics.utils import do_metric_reduction, ignore_background
from monai.utils import MetricReduction, convert_to_numpy, convert_to_tensor, optional_import

from .metric import CumulativeIterationMetric

BinaryPairwiseMeasures, _ = optional_import("MetricsReloaded.metrics.pairwise_measures", name="BinaryPairwiseMeasures")
MultiClassPairwiseMeasures, _ = optional_import(
    "MetricsReloaded.metrics.pairwise_measures", name="MultiClassPairwiseMeasures"
)

__all__ = ["MetricsReloadedBinary", "MetricsReloadedCategorical"]


class MetricsReloadedWrapper(CumulativeIterationMetric):
    """Base class for defining MetricsReloaded metrics as a CumulativeIterationMetric.

    Args:
        metric_name: Name of a metric from the MetricsReloaded package.
        include_background: whether to include computation on the first channel of
            the predicted output. Defaults to ``True``.
        reduction: define mode of reduction to the metrics, will only apply reduction on `not-nan` values,
            available reduction modes: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``,
            ``"mean_channel"``, ``"sum_channel"``}, default to ``"mean"``. if "none", will not do reduction.
        get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans).
            Here `not_nans` count the number of not nans for the metric,
            thus its shape equals to the shape of the metric.

    """

    def __init__(
        self,
        metric_name: str,
        include_background: bool = True,
        reduction: MetricReduction | str = MetricReduction.MEAN,
        get_not_nans: bool = False,
    ) -> None:
        super().__init__()
        self.metric_name = metric_name
        self.include_background = include_background
        self.reduction = reduction
        self.get_not_nans = get_not_nans

    def aggregate(
        self, reduction: MetricReduction | str | None = None
    ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
        data = self.get_buffer()
        if not isinstance(data, torch.Tensor):
            raise ValueError("the data to aggregate must be PyTorch Tensor.")
        # do metric reduction
        f, not_nans = do_metric_reduction(data, reduction or self.reduction)
        return (f, not_nans) if self.get_not_nans else f

    def prepare_onehot(self, y_pred, y):
        """Prepares onehot encoded input for metric call."""
        y = y.float()
        y_pred = y_pred.float()
        if not self.include_background:
            y_pred, y = ignore_background(y_pred=y_pred, y=y)
        return y_pred, y, y_pred.device


[docs] class MetricsReloadedBinary(MetricsReloadedWrapper): """ Wraps the binary pairwise metrics of MetricsReloaded. Args: metric_name: Name of a binary metric from the MetricsReloaded package. include_background: whether to include computation on the first channel of the predicted output. Defaults to ``True``. reduction: define mode of reduction to the metrics, will only apply reduction on `not-nan` values, available reduction modes: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, ``"mean_channel"``, ``"sum_channel"``}, default to ``"mean"``. if "none", will not do reduction. get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans). Here `not_nans` count the number of not nans for the metric, thus its shape equals to the shape of the metric. Example: .. code-block:: python import torch from monai.metrics import MetricsReloadedBinary metric_name = "Cohens Kappa" metric = MetricsReloadedBinary(metric_name=metric_name) # first iteration # shape [batch=1, channel=1, 2, 2] y_pred = torch.tensor([[[[1.0, 0.0], [0.0, 1.0]]]]) y = torch.tensor([[[[1.0, 0.0], [1.0, 1.0]]]]) print(metric(y_pred, y)) # second iteration # shape [batch=1, channel=1, 2, 2] y_pred = torch.tensor([[[[1.0, 0.0], [0.0, 0.0]]]]) y = torch.tensor([[[[1.0, 0.0], [1.0, 1.0]]]]) print(metric(y_pred, y)) # aggregate # shape ([batch=2, channel=1]) print(metric.aggregate(reduction="none")) # tensor([[0.5], [0.2]]) # reset metric.reset() """ def __init__( self, metric_name: str, include_background: bool = True, reduction: MetricReduction | str = MetricReduction.MEAN, get_not_nans: bool = False, ) -> None: super().__init__( metric_name=metric_name, include_background=include_background, reduction=reduction, get_not_nans=get_not_nans, ) def _compute_tensor(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: # type: ignore[override] """Computes a binary (single-class) MetricsReloaded metric from a batch of predictions and references. Args: y_pred: Prediction with dimensions (batch, channel, *spatial), where channel=1. The values should be binarized. y: Ground-truth with dimensions (batch, channel, *spatial), where channel=1. The values should be binarized. Raises: ValueError: when `y_pred` has less than three dimensions. ValueError: when second dimension ~= 1 """ # Preprocess y_pred, y, device = self.prepare_onehot(y_pred, y) # Sanity check dims = y_pred.ndimension() if dims < 3: raise ValueError(f"y_pred should have at least 3 dimensions (batch, channel, spatial), got {dims}.") if y_pred.shape[1] != 1 or y.shape[1] != 1: raise ValueError(f"y_pred.shape[1]={y_pred.shape[1]} and y.shape[1]={y.shape[1]} should be one.") # To numpy array y_pred = convert_to_numpy(y_pred) y = convert_to_numpy(y) # Create binary pairwise metric object bpm = BinaryPairwiseMeasures(y_pred, y, axis=tuple(range(2, dims)), smooth_dr=1e-5) # Is requested metric available? if self.metric_name not in bpm.metrics: raise ValueError(f"Unsupported metric: {self.metric_name}") # Compute metric metric = bpm.metrics[self.metric_name]() # Return metric as tensor return convert_to_tensor(metric, device=device) # type: ignore[no-any-return]
[docs] class MetricsReloadedCategorical(MetricsReloadedWrapper): """ Wraps the categorical pairwise metrics of MetricsReloaded. Args: metric_name: Name of a categorical metric from the MetricsReloaded package. include_background: whether to include computation on the first channel of the predicted output. Defaults to ``True``. reduction: define mode of reduction to the metrics, will only apply reduction on `not-nan` values, available reduction modes: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, ``"mean_channel"``, ``"sum_channel"``}, default to ``"mean"``. if "none", will not do reduction. get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans). Here `not_nans` count the number of not nans for the metric, thus its shape equals to the shape of the metric. smooth_dr: a small constant added to the denominator to avoid nan. OBS: should be greater than zero. Example: .. code-block:: python import torch from monai.metrics import MetricsReloadedCategorical metric_name = "Weighted Cohens Kappa" metric = MetricsReloadedCategorical(metric_name=metric_name) # first iteration # shape [bach=1, channel=3, 2, 2] y_pred = torch.tensor([[[[0, 0], [0, 1]], [[0, 0], [0, 0]], [[1, 1], [1, 0]]]]) y = torch.tensor([[[[1, 0], [0, 1]], [[0, 1], [0, 0]], [[0, 0], [1, 0]]]]) print(metric(y_pred, y)) # second iteration # shape [batch=1, channel=3, 2, 2] y_pred = torch.tensor([[[[1, 0], [0, 1]], [[0, 1], [1, 0]], [[0, 0], [0, 0]]]]) y = torch.tensor([[[[1, 0], [0, 1]], [[0, 1], [0, 0]], [[0, 0], [1, 0]]]]) print(metric(y_pred, y)) # aggregate # shape ([batch=2, channel=1]) print(metric.aggregate(reduction="none")) # tensor([[0.2727], [0.6000]]) # reset metric.reset() """ def __init__( self, metric_name: str, include_background: bool = True, reduction: MetricReduction | str = MetricReduction.MEAN, get_not_nans: bool = False, smooth_dr: float = 1e-5, ) -> None: super().__init__( metric_name=metric_name, include_background=include_background, reduction=reduction, get_not_nans=get_not_nans, ) self.smooth_dr = smooth_dr def _compute_tensor(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: # type: ignore[override] """Computes a categorical (multi-class) MetricsReloaded metric from a batch of predictions and references. Args: y_pred: Prediction with dimensions (batch, channel, *spatial). The values should be one-hot encoded and binarized. y: Ground-truth with dimensions (batch, channel, *spatial). The values should be 1 one-hot encoded and binarized. Raises: ValueError: when `y_pred` has less than three dimensions. """ # Preprocess y_pred, y, device = self.prepare_onehot(y_pred, y) # Sanity check dims = y_pred.ndimension() if dims < 3: raise ValueError(f"y_pred should have at least 3 dimensions (batch, channel, spatial), got {dims}.") num_classes = y_pred.shape[1] # Reshape and permute for compatible dimension with MetricsReloaded y_pred = y_pred.reshape(y_pred.shape[0], y_pred.shape[1], -1) y_pred = y_pred.permute((0, 2, 1)) y = y.reshape(y.shape[0], y.shape[1], -1) y = y.permute((0, 2, 1)) dims = y_pred.ndimension() # To numpy array y_pred = convert_to_numpy(y_pred) y = convert_to_numpy(y) # Create categorical pairwise metric object bpm = MultiClassPairwiseMeasures( y_pred, y, axis=tuple(range(1, dims)), smooth_dr=self.smooth_dr, list_values=list(range(num_classes)), is_onehot=True, ) # Is requested metric available? if self.metric_name not in bpm.metrics: raise ValueError(f"Unsupported metric: {self.metric_name}") # Compute metric metric = bpm.metrics[self.metric_name]() # Put back singleton channel dimension metric = metric[..., None] # Return metric as tensor return cast(torch.Tensor, convert_to_tensor(metric, device=device))