Source code for monai.inferers.utils

# Copyright 2020 - 2021 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Callable, List, Sequence, Tuple, Union

import torch
import torch.nn.functional as F

from import compute_importance_map, dense_patch_slices, get_valid_patch_size
from monai.utils import BlendMode, PytorchPadMode, fall_back_tuple

__all__ = ["sliding_window_inference"]

[docs]def sliding_window_inference( inputs: torch.Tensor, roi_size: Union[Sequence[int], int], sw_batch_size: int, predictor: Callable[..., torch.Tensor], overlap: float = 0.25, mode: Union[BlendMode, str] = BlendMode.CONSTANT, sigma_scale: Union[Sequence[float], float] = 0.125, padding_mode: Union[PytorchPadMode, str] = PytorchPadMode.CONSTANT, cval: float = 0.0, sw_device: Union[torch.device, str, None] = None, device: Union[torch.device, str, None] = None, *args: Any, **kwargs: Any, ) -> torch.Tensor: """ Sliding window inference on `inputs` with `predictor`. When roi_size is larger than the inputs' spatial size, the input image are padded during inference. To maintain the same spatial sizes, the output image will be cropped to the original input size. Args: inputs: input image to be processed (assuming NCHW[D]) roi_size: the spatial window size for inferences. When its components have None or non-positives, the corresponding inputs dimension will be used. if the components of the `roi_size` are non-positive values, the transform will use the corresponding components of img size. For example, `roi_size=(32, -1)` will be adapted to `(32, 64)` if the second spatial dimension size of img is `64`. sw_batch_size: the batch size to run window slices. predictor: given input tensor `patch_data` in shape NCHW[D], `predictor(patch_data)` should return a prediction with the same spatial shape and batch_size, i.e. NMHW[D]; where HW[D] represents the patch spatial size, M is the number of output channels, N is `sw_batch_size`. overlap: Amount of overlap between scans. mode: {``"constant"``, ``"gaussian"``} How to blend output of overlapping windows. Defaults to ``"constant"``. - ``"constant``": gives equal weight to all predictions. - ``"gaussian``": gives less weight to predictions on edges of windows. sigma_scale: the standard deviation coefficient of the Gaussian window when `mode` is ``"gaussian"``. Default: 0.125. Actual window sigma is ``sigma_scale`` * ``dim_size``. When sigma_scale is a sequence of floats, the values denote sigma_scale at the corresponding spatial dimensions. padding_mode: {``"constant"``, ``"reflect"``, ``"replicate"``, ``"circular"``} Padding mode for ``inputs``, when ``roi_size`` is larger than inputs. Defaults to ``"constant"`` See also: cval: fill value for 'constant' padding mode. Default: 0 sw_device: device for the window data. By default the device (and accordingly the memory) of the `inputs` is used. Normally `sw_device` should be consistent with the device where `predictor` is defined. device: device for the stitched output prediction. By default the device (and accordingly the memory) of the `inputs` is used. If for example set to device=torch.device('cpu') the gpu memory consumption is less and independent of the `inputs` and `roi_size`. Output is on the `device`. args: optional args to be passed to ``predictor``. kwargs: optional keyword args to be passed to ``predictor``. Note: - input must be channel-first and have a batch dim, supports N-D sliding window. """ num_spatial_dims = len(inputs.shape) - 2 if overlap < 0 or overlap >= 1: raise AssertionError("overlap must be >= 0 and < 1.") # determine image spatial size and batch size # Note: all input images must have the same image size and batch size image_size_ = list(inputs.shape[2:]) batch_size = inputs.shape[0] if device is None: device = inputs.device if sw_device is None: sw_device = inputs.device roi_size = fall_back_tuple(roi_size, image_size_) # in case that image size is smaller than roi size image_size = tuple(max(image_size_[i], roi_size[i]) for i in range(num_spatial_dims)) pad_size = [] for k in range(len(inputs.shape) - 1, 1, -1): diff = max(roi_size[k - 2] - inputs.shape[k], 0) half = diff // 2 pad_size.extend([half, diff - half]) inputs = F.pad(inputs, pad=pad_size, mode=PytorchPadMode(padding_mode).value, value=cval) scan_interval = _get_scan_interval(image_size, roi_size, num_spatial_dims, overlap) # Store all slices in list slices = dense_patch_slices(image_size, roi_size, scan_interval) num_win = len(slices) # number of windows per image total_slices = num_win * batch_size # total number of windows # Create window-level importance map importance_map = compute_importance_map( get_valid_patch_size(image_size, roi_size), mode=mode, sigma_scale=sigma_scale, device=device ) # Perform predictions output_image, count_map = torch.tensor(0.0, device=device), torch.tensor(0.0, device=device) _initialized = False for slice_g in range(0, total_slices, sw_batch_size): slice_range = range(slice_g, min(slice_g + sw_batch_size, total_slices)) unravel_slice = [ [slice(int(idx / num_win), int(idx / num_win) + 1), slice(None)] + list(slices[idx % num_win]) for idx in slice_range ] window_data =[inputs[win_slice] for win_slice in unravel_slice]).to(sw_device) seg_prob = predictor(window_data, *args, **kwargs).to(device) # batched patch segmentation if not _initialized: # init. buffer at the first iteration output_classes = seg_prob.shape[1] output_shape = [batch_size, output_classes] + list(image_size) # allocate memory to store the full output and the count for overlapping parts output_image = torch.zeros(output_shape, dtype=torch.float32, device=device) count_map = torch.zeros(output_shape, dtype=torch.float32, device=device) _initialized = True # store the result in the proper location of the full output. Apply weights from importance map. for idx, original_idx in zip(slice_range, unravel_slice): output_image[original_idx] += importance_map * seg_prob[idx - slice_g] count_map[original_idx] += importance_map # account for any overlapping sections output_image = output_image / count_map final_slicing: List[slice] = [] for sp in range(num_spatial_dims): slice_dim = slice(pad_size[sp * 2], image_size_[num_spatial_dims - sp - 1] + pad_size[sp * 2]) final_slicing.insert(0, slice_dim) while len(final_slicing) < len(output_image.shape): final_slicing.insert(0, slice(None)) return output_image[final_slicing]
def _get_scan_interval( image_size: Sequence[int], roi_size: Sequence[int], num_spatial_dims: int, overlap: float ) -> Tuple[int, ...]: """ Compute scan interval according to the image size, roi size and overlap. Scan interval will be `int((1 - overlap) * roi_size)`, if interval is 0, use 1 instead to make sure sliding window works. """ if len(image_size) != num_spatial_dims: raise ValueError("image coord different from spatial dims.") if len(roi_size) != num_spatial_dims: raise ValueError("roi coord different from spatial dims.") scan_interval = [] for i in range(num_spatial_dims): if roi_size[i] == image_size[i]: scan_interval.append(int(roi_size[i])) else: interval = int(roi_size[i] * (1 - overlap)) scan_interval.append(interval if interval > 0 else 1) return tuple(scan_interval)