Source code for monai.metrics.regression

# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from abc import abstractmethod
from functools import partial
from typing import Any, Tuple, Union

import torch
import torch.nn.functional as F

from monai.metrics.utils import do_metric_reduction
from monai.utils import MetricReduction
from monai.utils.type_conversion import convert_to_dst_type

from .metric import CumulativeIterationMetric


class RegressionMetric(CumulativeIterationMetric):
    """
    Base class for regression metrics.
    Input `y_pred` is compared with ground truth `y`.
    Both `y_pred` and `y` are expected to be real-valued, where `y_pred` is output from a regression model.
    `y_preds` and `y` can be a list of channel-first Tensor (CHW[D]) or a batch-first Tensor (BCHW[D]).

    Example of the typical execution steps of this metric class follows :py:class:`monai.metrics.metric.Cumulative`.

    Args:
        reduction: define mode of reduction to the metrics, will only apply reduction on `not-nan` values,
            available reduction modes: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``,
            ``"mean_channel"``, ``"sum_channel"``}, default to ``"mean"``. if "none", will not do reduction.
        get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans).
            Here `not_nans` count the number of not nans for the metric, thus its shape equals to the shape of the metric.

    """

    def __init__(
        self, reduction: Union[MetricReduction, str] = MetricReduction.MEAN, get_not_nans: bool = False
    ) -> None:
        super().__init__()
        self.reduction = reduction
        self.get_not_nans = get_not_nans

    def aggregate(self, reduction: Union[MetricReduction, str, None] = None):
        """
        Args:
            reduction: define mode of reduction to the metrics, will only apply reduction on `not-nan` values,
                available reduction modes: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``,
                ``"mean_channel"``, ``"sum_channel"``}, default to `self.reduction`. if "none", will not do reduction.
        """
        data = self.get_buffer()
        if not isinstance(data, torch.Tensor):
            raise ValueError("the data to aggregate must be PyTorch Tensor.")

        f, not_nans = do_metric_reduction(data, reduction or self.reduction)
        return (f, not_nans) if self.get_not_nans else f

    def _check_shape(self, y_pred: torch.Tensor, y: torch.Tensor) -> None:
        if y_pred.shape != y.shape:
            raise ValueError(f"y_pred and y shapes dont match, received y_pred: [{y_pred.shape}] and y: [{y.shape}]")

        # also check if there is atleast one non-batch dimension i.e. num_dims >= 2
        if len(y_pred.shape) < 2:
            raise ValueError("either channel or spatial dimensions required, found only batch dimension")

    @abstractmethod
    def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
        raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.")

    def _compute_tensor(self, y_pred: torch.Tensor, y: torch.Tensor):  # type: ignore
        if not isinstance(y_pred, torch.Tensor) or not isinstance(y, torch.Tensor):
            raise ValueError("y_pred and y must be PyTorch Tensor.")
        self._check_shape(y_pred, y)
        return self._compute_metric(y_pred, y)


[docs]class MSEMetric(RegressionMetric): r"""Compute Mean Squared Error between two tensors using function: .. math:: \operatorname {MSE}\left(Y, \hat{Y}\right) =\frac {1}{n}\sum _{i=1}^{n}\left(y_i-\hat{y_i} \right)^{2}. More info: https://en.wikipedia.org/wiki/Mean_squared_error Input `y_pred` is compared with ground truth `y`. Both `y_pred` and `y` are expected to be real-valued, where `y_pred` is output from a regression model. Example of the typical execution steps of this metric class follows :py:class:`monai.metrics.metric.Cumulative`. Args: reduction: define the mode to reduce metrics, will only execute reduction on `not-nan` values, available reduction modes: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, ``"mean_channel"``, ``"sum_channel"``}, default to ``"mean"``. if "none", will not do reduction. get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans). """ def __init__( self, reduction: Union[MetricReduction, str] = MetricReduction.MEAN, get_not_nans: bool = False ) -> None: super().__init__(reduction=reduction, get_not_nans=get_not_nans) self.sq_func = partial(torch.pow, exponent=2.0) def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: y_pred = y_pred.float() y = y.float() return compute_mean_error_metrics(y_pred, y, func=self.sq_func)
[docs]class MAEMetric(RegressionMetric): r"""Compute Mean Absolute Error between two tensors using function: .. math:: \operatorname {MAE}\left(Y, \hat{Y}\right) =\frac {1}{n}\sum _{i=1}^{n}\left|y_i-\hat{y_i}\right|. More info: https://en.wikipedia.org/wiki/Mean_absolute_error Input `y_pred` is compared with ground truth `y`. Both `y_pred` and `y` are expected to be real-valued, where `y_pred` is output from a regression model. Example of the typical execution steps of this metric class follows :py:class:`monai.metrics.metric.Cumulative`. Args: reduction: define the mode to reduce metrics, will only execute reduction on `not-nan` values, available reduction modes: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, ``"mean_channel"``, ``"sum_channel"``}, default to ``"mean"``. if "none", will not do reduction. get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans). """ def __init__( self, reduction: Union[MetricReduction, str] = MetricReduction.MEAN, get_not_nans: bool = False ) -> None: super().__init__(reduction=reduction, get_not_nans=get_not_nans) self.abs_func = torch.abs def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: y_pred = y_pred.float() y = y.float() return compute_mean_error_metrics(y_pred, y, func=self.abs_func)
[docs]class RMSEMetric(RegressionMetric): r"""Compute Root Mean Squared Error between two tensors using function: .. math:: \operatorname {RMSE}\left(Y, \hat{Y}\right) ={ \sqrt{ \frac {1}{n}\sum _{i=1}^{n}\left(y_i-\hat{y_i}\right)^2 } } \ = \sqrt {\operatorname{MSE}\left(Y, \hat{Y}\right)}. More info: https://en.wikipedia.org/wiki/Root-mean-square_deviation Input `y_pred` is compared with ground truth `y`. Both `y_pred` and `y` are expected to be real-valued, where `y_pred` is output from a regression model. Example of the typical execution steps of this metric class follows :py:class:`monai.metrics.metric.Cumulative`. Args: reduction: define the mode to reduce metrics, will only execute reduction on `not-nan` values, available reduction modes: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, ``"mean_channel"``, ``"sum_channel"``}, default to ``"mean"``. if "none", will not do reduction. get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans). """ def __init__( self, reduction: Union[MetricReduction, str] = MetricReduction.MEAN, get_not_nans: bool = False ) -> None: super().__init__(reduction=reduction, get_not_nans=get_not_nans) self.sq_func = partial(torch.pow, exponent=2.0) def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: y_pred = y_pred.float() y = y.float() mse_out = compute_mean_error_metrics(y_pred, y, func=self.sq_func) return torch.sqrt(mse_out)
[docs]class PSNRMetric(RegressionMetric): r"""Compute Peak Signal To Noise Ratio between two tensors using function: .. math:: \operatorname{PSNR}\left(Y, \hat{Y}\right) = 20 \cdot \log_{10} \left({\mathit{MAX}}_Y\right) \ -10 \cdot \log_{10}\left(\operatorname{MSE\left(Y, \hat{Y}\right)}\right) More info: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio Help taken from: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/image_ops_impl.py line 4139 Input `y_pred` is compared with ground truth `y`. Both `y_pred` and `y` are expected to be real-valued, where `y_pred` is output from a regression model. Example of the typical execution steps of this metric class follows :py:class:`monai.metrics.metric.Cumulative`. Args: max_val: The dynamic range of the images/volumes (i.e., the difference between the maximum and the minimum allowed values e.g. 255 for a uint8 image). reduction: define the mode to reduce metrics, will only execute reduction on `not-nan` values, available reduction modes: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, ``"mean_channel"``, ``"sum_channel"``}, default to ``"mean"``. if "none", will not do reduction. get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans). """ def __init__( self, max_val: Union[int, float], reduction: Union[MetricReduction, str] = MetricReduction.MEAN, get_not_nans: bool = False, ) -> None: super().__init__(reduction=reduction, get_not_nans=get_not_nans) self.max_val = max_val self.sq_func = partial(torch.pow, exponent=2.0) def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> Any: y_pred = y_pred.float() y = y.float() mse_out = compute_mean_error_metrics(y_pred, y, func=self.sq_func) return 20 * math.log10(self.max_val) - 10 * torch.log10(mse_out)
def compute_mean_error_metrics(y_pred: torch.Tensor, y: torch.Tensor, func) -> torch.Tensor: # reducing in only channel + spatial dimensions (not batch) # reduction of batch handled inside __call__() using do_metric_reduction() in respective calling class flt = partial(torch.flatten, start_dim=1) return torch.mean(flt(func(y - y_pred)), dim=-1, keepdim=True)
[docs]class SSIMMetric(RegressionMetric): r""" Build a Pytorch version of the SSIM metric based on the original formula of SSIM .. math:: \operatorname {SSIM}(x,y) =\frac {(2 \mu_x \mu_y + c_1)(2 \sigma_{xy} + c_2)}{((\mu_x^2 + \ \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)} For more info, visit https://vicuesoft.com/glossary/term/ssim-ms-ssim/ Modified and adopted from: https://github.com/facebookresearch/fastMRI/blob/main/banding_removal/fastmri/ssim_loss_mixin.py SSIM reference paper: Wang, Zhou, et al. "Image quality assessment: from error visibility to structural similarity." IEEE transactions on image processing 13.4 (2004): 600-612. Args: data_range: dynamic range of the data win_size: gaussian weighting window size k1: stability constant used in the luminance denominator k2: stability constant used in the contrast denominator spatial_dims: if 2, input shape is expected to be (B,C,W,H). if 3, it is expected to be (B,C,W,H,D) reduction: define the mode to reduce metrics, will only execute reduction on `not-nan` values, available reduction modes: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, ``"mean_channel"``, ``"sum_channel"``}, default to ``"mean"``. if "none", will not do reduction get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans) """ def __init__( self, data_range: torch.Tensor, win_size: int = 7, k1: float = 0.01, k2: float = 0.03, spatial_dims: int = 2, reduction: Union[MetricReduction, str] = MetricReduction.MEAN, get_not_nans: bool = False, ): super().__init__(reduction=reduction, get_not_nans=get_not_nans) self.data_range = data_range self.win_size = win_size self.k1, self.k2 = k1, k2 self.spatial_dims = spatial_dims self.cov_norm = (win_size**2) / (win_size**2 - 1) self.w = torch.ones([1, 1] + [win_size for _ in range(spatial_dims)]) / win_size**spatial_dims def _compute_intermediate_statistics(self, x: torch.Tensor, y: torch.Tensor) -> Tuple[torch.Tensor, ...]: data_range = self.data_range[(None,) * (self.spatial_dims + 2)] # determine whether to work with 2D convolution or 3D conv = getattr(F, f"conv{self.spatial_dims}d") w = convert_to_dst_type(src=self.w, dst=x)[0] c1 = (self.k1 * data_range) ** 2 # stability constant for luminance c2 = (self.k2 * data_range) ** 2 # stability constant for contrast ux = conv(x, w) # mu_x uy = conv(y, w) # mu_y uxx = conv(x * x, w) # mu_x^2 uyy = conv(y * y, w) # mu_y^2 uxy = conv(x * y, w) # mu_xy vx = self.cov_norm * (uxx - ux * ux) # sigma_x vy = self.cov_norm * (uyy - uy * uy) # sigma_y vxy = self.cov_norm * (uxy - ux * uy) # sigma_xy return c1, c2, ux, uy, vx, vy, vxy def _compute_metric(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: """ Args: x: first sample (e.g., the reference image). Its shape is (B,C,W,H) for 2D data and (B,C,W,H,D) for 3D. A fastMRI sample should use the 2D format with C being the number of slices. y: second sample (e.g., the reconstructed image). It has similar shape as x Returns: ssim_value Example: .. code-block:: python import torch x = torch.ones([1,1,10,10])/2 # ground truth y = torch.ones([1,1,10,10])/2 # prediction data_range = x.max().unsqueeze(0) # the following line should print 1.0 (or 0.9999) print(SSIMMetric(data_range=data_range,spatial_dims=2)._compute_metric(x,y)) """ if x.shape[1] > 1: # handling multiple channels (C>1) if x.shape[1] != y.shape[1]: raise ValueError( f"x and y should have the same number of channels, " f"but x has {x.shape[1]} channels and y has {y.shape[1]} channels." ) ssim = torch.stack( [ SSIMMetric(self.data_range, self.win_size, self.k1, self.k2, self.spatial_dims)( x[:, i, ...].unsqueeze(1), y[:, i, ...].unsqueeze(1) ) for i in range(x.shape[1]) ] ) channel_wise_ssim = ssim.mean(1).view(-1, 1) return channel_wise_ssim c1, c2, ux, uy, vx, vy, vxy = self._compute_intermediate_statistics(x, y) numerator = (2 * ux * uy + c1) * (2 * vxy + c2) denom = (ux**2 + uy**2 + c1) * (vx + vy + c2) ssim_value = numerator / denom # [B, 1] ssim_per_batch: torch.Tensor = ssim_value.view(ssim_value.shape[1], -1).mean(1, keepdim=True) return ssim_per_batch def _compute_metric_and_contrast(self, x: torch.Tensor, y: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: x: first sample (e.g., the reference image). Its shape is (B,C,W,H) for 2D data and (B,C,W,H,D) for 3D. A fastMRI sample should use the 2D format with C being the number of slices. y: second sample (e.g., the reconstructed image). It has similar shape as x Returns: ssim_value, cs_value """ if x.shape[1] > 1: # handling multiple channels (C>1) if x.shape[1] != y.shape[1]: raise ValueError( f"x and y should have the same number of channels, " f"but x has {x.shape[1]} channels and y has {y.shape[1]} channels." ) ssim_ls = [] cs_ls = [] for i in range(x.shape[1]): ssim_val, cs_val = SSIMMetric( self.data_range, self.win_size, self.k1, self.k2, self.spatial_dims )._compute_metric_and_contrast(x[:, i, ...].unsqueeze(1), y[:, i, ...].unsqueeze(1)) ssim_ls.append(ssim_val) cs_ls.append(cs_val) channel_wise_ssim: torch.Tensor = torch.stack(ssim_ls).mean(1).view(-1, 1) channel_wise_cs: torch.Tensor = torch.stack(cs_ls).mean(1).view(-1, 1) return channel_wise_ssim, channel_wise_cs c1, c2, ux, uy, vx, vy, vxy = self._compute_intermediate_statistics(x, y) numerator = (2 * ux * uy + c1) * (2 * vxy + c2) denom = (ux**2 + uy**2 + c1) * (vx + vy + c2) ssim_value = numerator / denom # [B, 1] ssim_per_batch: torch.Tensor = ssim_value.view(ssim_value.shape[1], -1).mean(1, keepdim=True) cs_per_batch: torch.Tensor = (2 * vxy + c2) / (vx + vy + c2) # contrast sensitivity function cs_per_batch = cs_per_batch.view(cs_per_batch.shape[0], -1).mean(1, keepdim=True) # [B, 1] return ssim_per_batch, cs_per_batch