Source code for monai.inferers.inferer

# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings
from abc import ABC, abstractmethod
from typing import Any, Callable, Dict, Mapping, Optional, Sequence, Tuple, Union

import torch
import torch.nn as nn

from monai.inferers.utils import compute_importance_map, sliding_window_inference
from monai.utils import BlendMode, PytorchPadMode, ensure_tuple
from monai.visualize import CAM, GradCAM, GradCAMpp

__all__ = ["Inferer", "SimpleInferer", "SlidingWindowInferer", "SaliencyInferer", "SliceInferer"]


[docs]class Inferer(ABC): """ A base class for model inference. Extend this class to support operations during inference, e.g. a sliding window method. Example code:: device = torch.device("cuda:0") transform = Compose([ToTensor(), LoadImage(image_only=True)]) data = transform(img_path).to(device) model = UNet(...).to(device) inferer = SlidingWindowInferer(...) model.eval() with torch.no_grad(): pred = inferer(inputs=data, network=model) ... """
[docs] @abstractmethod def __call__(self, inputs: torch.Tensor, network: Callable[..., torch.Tensor], *args: Any, **kwargs: Any): """ Run inference on `inputs` with the `network` model. Args: inputs: input of the model inference. network: model for inference. args: optional args to be passed to ``network``. kwargs: optional keyword args to be passed to ``network``. Raises: NotImplementedError: When the subclass does not override this method. """ raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.")
[docs]class SimpleInferer(Inferer): """ SimpleInferer is the normal inference method that run model forward() directly. Usage example can be found in the :py:class:`monai.inferers.Inferer` base class. """ def __init__(self) -> None: Inferer.__init__(self)
[docs] def __call__(self, inputs: torch.Tensor, network: Callable[..., torch.Tensor], *args: Any, **kwargs: Any): """Unified callable function API of Inferers. Args: inputs: model input data for inference. network: target model to execute inference. supports callables such as ``lambda x: my_torch_model(x, additional_config)`` args: optional args to be passed to ``network``. kwargs: optional keyword args to be passed to ``network``. """ return network(inputs, *args, **kwargs)
[docs]class SlidingWindowInferer(Inferer): """ Sliding window method for model inference, with `sw_batch_size` windows for every model.forward(). Usage example can be found in the :py:class:`monai.inferers.Inferer` base class. Args: roi_size: the window size to execute SlidingWindow evaluation. If it has non-positive components, the corresponding `inputs` size will be used. if the components of the `roi_size` are non-positive values, the transform will use the corresponding components of img size. For example, `roi_size=(32, -1)` will be adapted to `(32, 64)` if the second spatial dimension size of img is `64`. sw_batch_size: the batch size to run window slices. overlap: Amount of overlap between scans. mode: {``"constant"``, ``"gaussian"``} How to blend output of overlapping windows. Defaults to ``"constant"``. - ``"constant``": gives equal weight to all predictions. - ``"gaussian``": gives less weight to predictions on edges of windows. sigma_scale: the standard deviation coefficient of the Gaussian window when `mode` is ``"gaussian"``. Default: 0.125. Actual window sigma is ``sigma_scale`` * ``dim_size``. When sigma_scale is a sequence of floats, the values denote sigma_scale at the corresponding spatial dimensions. padding_mode: {``"constant"``, ``"reflect"``, ``"replicate"``, ``"circular"``} Padding mode when ``roi_size`` is larger than inputs. Defaults to ``"constant"`` See also: https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html cval: fill value for 'constant' padding mode. Default: 0 sw_device: device for the window data. By default the device (and accordingly the memory) of the `inputs` is used. Normally `sw_device` should be consistent with the device where `predictor` is defined. device: device for the stitched output prediction. By default the device (and accordingly the memory) of the `inputs` is used. If for example set to device=torch.device('cpu') the gpu memory consumption is less and independent of the `inputs` and `roi_size`. Output is on the `device`. progress: whether to print a tqdm progress bar. cache_roi_weight_map: whether to precompute the ROI weight map. Note: ``sw_batch_size`` denotes the max number of windows per network inference iteration, not the batch size of inputs. """ def __init__( self, roi_size: Union[Sequence[int], int], sw_batch_size: int = 1, overlap: float = 0.25, mode: Union[BlendMode, str] = BlendMode.CONSTANT, sigma_scale: Union[Sequence[float], float] = 0.125, padding_mode: Union[PytorchPadMode, str] = PytorchPadMode.CONSTANT, cval: float = 0.0, sw_device: Union[torch.device, str, None] = None, device: Union[torch.device, str, None] = None, progress: bool = False, cache_roi_weight_map: bool = False, ) -> None: Inferer.__init__(self) self.roi_size = roi_size self.sw_batch_size = sw_batch_size self.overlap = overlap self.mode: BlendMode = BlendMode(mode) self.sigma_scale = sigma_scale self.padding_mode = padding_mode self.cval = cval self.sw_device = sw_device self.device = device self.progress = progress # compute_importance_map takes long time when computing on cpu. We thus # compute it once if it's static and then save it for future usage self.roi_weight_map = None try: if cache_roi_weight_map and isinstance(roi_size, Sequence) and min(roi_size) > 0: # non-dynamic roi size if device is None: device = "cpu" self.roi_weight_map = compute_importance_map( ensure_tuple(self.roi_size), mode=mode, sigma_scale=sigma_scale, device=device ) if cache_roi_weight_map and self.roi_weight_map is None: warnings.warn("cache_roi_weight_map=True, but cache is not created. (dynamic roi_size?)") except BaseException as e: raise RuntimeError( "Seems to be OOM. Please try smaller roi_size, or use mode='constant' instead of mode='gaussian'. " ) from e
[docs] def __call__( self, inputs: torch.Tensor, network: Callable[..., Union[torch.Tensor, Sequence[torch.Tensor], Dict[Any, torch.Tensor]]], *args: Any, **kwargs: Any, ) -> Union[torch.Tensor, Tuple[torch.Tensor, ...], Dict[Any, torch.Tensor]]: """ Args: inputs: model input data for inference. network: target model to execute inference. supports callables such as ``lambda x: my_torch_model(x, additional_config)`` args: optional args to be passed to ``network``. kwargs: optional keyword args to be passed to ``network``. """ return sliding_window_inference( inputs, self.roi_size, self.sw_batch_size, network, self.overlap, self.mode, self.sigma_scale, self.padding_mode, self.cval, self.sw_device, self.device, self.progress, self.roi_weight_map, *args, **kwargs, )
[docs]class SaliencyInferer(Inferer): """ SaliencyInferer is inference with activation maps. Args: cam_name: expected CAM method name, should be: "CAM", "GradCAM" or "GradCAMpp". target_layers: name of the model layer to generate the feature map. class_idx: index of the class to be visualized. if None, default to argmax(logits). args: other optional args to be passed to the `__init__` of cam. kwargs: other optional keyword args to be passed to `__init__` of cam. """ def __init__(self, cam_name: str, target_layers: str, class_idx: Optional[int] = None, *args, **kwargs) -> None: Inferer.__init__(self) if cam_name.lower() not in ("cam", "gradcam", "gradcampp"): raise ValueError("cam_name should be: 'CAM', 'GradCAM' or 'GradCAMpp'.") self.cam_name = cam_name.lower() self.target_layers = target_layers self.class_idx = class_idx self.args = args self.kwargs = kwargs
[docs] def __call__(self, inputs: torch.Tensor, network: nn.Module, *args: Any, **kwargs: Any): # type: ignore """Unified callable function API of Inferers. Args: inputs: model input data for inference. network: target model to execute inference. supports callables such as ``lambda x: my_torch_model(x, additional_config)`` args: other optional args to be passed to the `__call__` of cam. kwargs: other optional keyword args to be passed to `__call__` of cam. """ cam: Union[CAM, GradCAM, GradCAMpp] if self.cam_name == "cam": cam = CAM(network, self.target_layers, *self.args, **self.kwargs) elif self.cam_name == "gradcam": cam = GradCAM(network, self.target_layers, *self.args, **self.kwargs) else: cam = GradCAMpp(network, self.target_layers, *self.args, **self.kwargs) return cam(inputs, self.class_idx, *args, **kwargs)
[docs]class SliceInferer(SlidingWindowInferer): """ SliceInferer extends SlidingWindowInferer to provide slice-by-slice (2D) inference when provided a 3D volume. A typical use case could be a 2D model (like 2D segmentation UNet) operates on the slices from a 3D volume, and the output is a 3D volume with 2D slices aggregated. Example:: # sliding over the `spatial_dim` inferer = SliceInferer(roi_size=(64, 256), sw_batch_size=1, spatial_dim=1) output = inferer(input_volume, net) Args: spatial_dim: Spatial dimension over which the slice-by-slice inference runs on the 3D volume. For example ``0`` could slide over axial slices. ``1`` over coronal slices and ``2`` over sagittal slices. args: other optional args to be passed to the `__init__` of base class SlidingWindowInferer. kwargs: other optional keyword args to be passed to `__init__` of base class SlidingWindowInferer. Note: ``roi_size`` in SliceInferer is expected to be a 2D tuple when a 3D volume is provided. This allows sliding across slices along the 3D volume using a selected ``spatial_dim``. """ def __init__(self, spatial_dim: int = 0, *args, **kwargs) -> None: self.spatial_dim = spatial_dim super().__init__(*args, **kwargs) self.orig_roi_size = ensure_tuple(self.roi_size)
[docs] def __call__( self, inputs: torch.Tensor, network: Callable[..., Union[torch.Tensor, Sequence[torch.Tensor], Dict[Any, torch.Tensor]]], *args: Any, **kwargs: Any, ) -> Union[torch.Tensor, Tuple[torch.Tensor, ...], Dict[Any, torch.Tensor]]: """ Args: inputs: 3D input for inference network: 2D model to execute inference on slices in the 3D input args: optional args to be passed to ``network``. kwargs: optional keyword args to be passed to ``network``. """ if self.spatial_dim > 2: raise ValueError("`spatial_dim` can only be `0, 1, 2` with `[H, W, D]` respectively.") # Check if ``roi_size`` tuple is 2D and ``inputs`` tensor is 3D self.roi_size = ensure_tuple(self.roi_size) if len(self.orig_roi_size) == 2 and len(inputs.shape[2:]) == 3: self.roi_size = list(self.orig_roi_size) self.roi_size.insert(self.spatial_dim, 1) else: raise RuntimeError( f"Currently, only 2D `roi_size` ({self.orig_roi_size}) with 3D `inputs` tensor (shape={inputs.shape}) is supported." ) return super().__call__(inputs=inputs, network=lambda x: self.network_wrapper(network, x, *args, **kwargs))
[docs] def network_wrapper( self, network: Callable[..., Union[torch.Tensor, Sequence[torch.Tensor], Dict[Any, torch.Tensor]]], x: torch.Tensor, *args, **kwargs, ) -> Union[torch.Tensor, Tuple[torch.Tensor, ...], Dict[Any, torch.Tensor]]: """ Wrapper handles inference for 2D models over 3D volume inputs. """ # Pass 4D input [N, C, H, W]/[N, C, D, W]/[N, C, D, H] to the model as it is 2D. x = x.squeeze(dim=self.spatial_dim + 2) out = network(x, *args, **kwargs) # Unsqueeze the network output so it is [N, C, D, H, W] as expected by # the default SlidingWindowInferer class if isinstance(out, torch.Tensor): return out.unsqueeze(dim=self.spatial_dim + 2) if isinstance(out, Mapping): for k in out.keys(): out[k] = out[k].unsqueeze(dim=self.spatial_dim + 2) return out return tuple(out_i.unsqueeze(dim=self.spatial_dim + 2) for out_i in out)