Source code for monai.networks.blocks.patchembedding

# Copyright 2020 - 2021 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import math
from typing import Sequence, Union

import numpy as np
import torch
import torch.nn as nn

from monai.networks.layers import Conv
from monai.utils import ensure_tuple_rep, optional_import
from monai.utils.module import look_up_option

Rearrange, _ = optional_import("einops.layers.torch", name="Rearrange")
SUPPORTED_EMBEDDING_TYPES = {"conv", "perceptron"}


[docs]class PatchEmbeddingBlock(nn.Module): """ A patch embedding block, based on: "Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>" Example:: >>> from monai.networks.blocks import PatchEmbeddingBlock >>> PatchEmbeddingBlock(in_channels=4, img_size=32, patch_size=8, hidden_size=32, num_heads=4, pos_embed="conv") """
[docs] def __init__( self, in_channels: int, img_size: Union[Sequence[int], int], patch_size: Union[Sequence[int], int], hidden_size: int, num_heads: int, pos_embed: str, dropout_rate: float = 0.0, spatial_dims: int = 3, ) -> None: """ Args: in_channels: dimension of input channels. img_size: dimension of input image. patch_size: dimension of patch size. hidden_size: dimension of hidden layer. num_heads: number of attention heads. pos_embed: position embedding layer type. dropout_rate: faction of the input units to drop. spatial_dims: number of spatial dimensions. """ super().__init__() if not (0 <= dropout_rate <= 1): raise ValueError("dropout_rate should be between 0 and 1.") if hidden_size % num_heads != 0: raise ValueError("hidden size should be divisible by num_heads.") self.pos_embed = look_up_option(pos_embed, SUPPORTED_EMBEDDING_TYPES) img_size = ensure_tuple_rep(img_size, spatial_dims) patch_size = ensure_tuple_rep(patch_size, spatial_dims) for m, p in zip(img_size, patch_size): if m < p: raise ValueError("patch_size should be smaller than img_size.") if self.pos_embed == "perceptron" and m % p != 0: raise ValueError("patch_size should be divisible by img_size for perceptron.") self.n_patches = np.prod([im_d // p_d for im_d, p_d in zip(img_size, patch_size)]) self.patch_dim = in_channels * np.prod(patch_size) self.patch_embeddings: nn.Module if self.pos_embed == "conv": self.patch_embeddings = Conv[Conv.CONV, spatial_dims]( in_channels=in_channels, out_channels=hidden_size, kernel_size=patch_size, stride=patch_size ) elif self.pos_embed == "perceptron": # for 3d: "b c (h p1) (w p2) (d p3)-> b (h w d) (p1 p2 p3 c)" chars = (("h", "p1"), ("w", "p2"), ("d", "p3"))[:spatial_dims] from_chars = "b c " + " ".join(f"({k} {v})" for k, v in chars) to_chars = f"b ({' '.join([c[0] for c in chars])}) ({' '.join([c[1] for c in chars])} c)" axes_len = {f"p{i+1}": p for i, p in enumerate(patch_size)} self.patch_embeddings = nn.Sequential( Rearrange(f"{from_chars} -> {to_chars}", **axes_len), nn.Linear(self.patch_dim, hidden_size) ) self.position_embeddings = nn.Parameter(torch.zeros(1, self.n_patches, hidden_size)) self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size)) self.dropout = nn.Dropout(dropout_rate) self.trunc_normal_(self.position_embeddings, mean=0.0, std=0.02, a=-2.0, b=2.0) self.apply(self._init_weights)
def _init_weights(self, m): if isinstance(m, nn.Linear): self.trunc_normal_(m.weight, mean=0.0, std=0.02, a=-2.0, b=2.0) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def trunc_normal_(self, tensor, mean, std, a, b): # From PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 with torch.no_grad(): l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) tensor.uniform_(2 * l - 1, 2 * u - 1) tensor.erfinv_() tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) tensor.clamp_(min=a, max=b) return tensor
[docs] def forward(self, x): x = self.patch_embeddings(x) if self.pos_embed == "conv": x = x.flatten(2).transpose(-1, -2) embeddings = x + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings